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Abstract—The stability of an elastic plate in supersonic gas flow is investigated using asymptotic meth-
ods and taking the boundary layer formed on the plate surface into account. It is shown that the effect
of the boundary layer can be of two types depending on its profile. In the case of generalized convex
profiles (characteristic of accelerated flow) supersonic and subsonic plate oscillations are stabilized and
destabilized, respectively. In the case of profiles with a generalized inflection point located in the sub-
sonic part of the layer (characteristic of homogeneous and decelerated flows) supersonic perturbations
are destabilized in the thin boundary layer and stabilized when the layer is fairly thick; subsonic pertur-
bations are damped.
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Earlier, the problem of stability of an elastic plate in potential inviscid gas flow was investigated using
asymptotic methods [1]. It was shown that along with the well-known flutter of the coupled type, studied in
detail [2], a single-mode flutter, which has not been studied earlier, can also occur. In this case the single-
mode flutter cannot be revealed and investigated by means of the piston theory usually used in aeroelasticity
and requires to use the exact potential gas flow theory or more complex theories. Later, these results were
confirmed numerically [3] and experimentally [4].

In the previous studies the gas viscosity was neglected and flow was assumed to be homogeneous. How-
ever, in [5, 6] it was shown that flutter can be reduced or completely suppressed in the presence of a boundary
layer. This result was obtained in investigating a particular boundary layer profile, namely, that with the one-
seventh law. However, when aircrafts move, qualitatively different boundary layer profiles can develop in
various parts of the surface depending on the flow conditions. In the present study the effect of the boundary
layer of an arbitrary form on the single-mode flutter is investigated analytically.

1. FORMULATION OF THE PROBLEM

We will investigate the stability of an elastic, isotropically stretched plate exposed on one side to a plane-
parallel gas flow. The plate has the shape of a strip and is embedded in an absolutely rigid plane. On
its surface there is a boundary layer with dimensionless velocity and temperature profiles u0(z) and T0(z)
nondimensionalized by the free-stream sonic speed and temperature, respectively.

The problem is solved in the plane formulation when there is no dependence on the y coordinate on the
assumption that the undisturbed flow is plane-parallel, i.e., independent of x. We will assume that the flow
is laminar and the Reynolds number Re→ ∞. This is equivalent to the fact that the gas can be considered
to be inviscid when perturbations are small and the effect of viscosity is expressed only in inhomogeneous
velocity and temperature distributions.
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Fig. 1. Flow past a plate.

In dimensionless variables the equation of motion of the plate has the form:

D
∂ 4w
∂x4 − M2

w
∂ 2w
∂x2 +

∂ 2w
∂ t2 + p = 0. (1.1)

Here, w is the deflection of the plate, D is its stiffness, the parameter Mw characterizes its tension, and p
is the gas pressure perturbation generated by the perturbation of the plate itself and, respectively, dependent
on w. The problem also has two parameters L and μ which are equal, respectively, to the plate length divided
by the thickness and to the ratio of the free-stream and plate-material densities. The detailed definition of
the dimensionless parameters is given in [1].

The investigation consists of two stages. Initially, the plate is assumed to be infinite and its perturbations
in the form of traveling waves w(x, t) = ei(kx−ωt) are studied. Then, assuming that the plate is finite, we will
construct its eigenfunctions in the form of a superposition of traveling waves which satisfies the boundary
conditions. In this case we will use the global instability criterion [7].

2. DISPERSION RELATION FOR AN INFINITE
PLATE IN GAS FLOW

In this section we will assume that the plate is infinite and the perturbation has the form w(x, t) =
ei(kx−ωt). In order to derive the dispersion relation between k and ω it is necessary to calculate the pres-
sure perturbation acting on the plate. Propagation of perturbations in shear compressible gas flow can be
described by the compressible Rayleigh equation [8]

d
dz

(
(u0 − c)dv/dz − vdu0/dz

T0 − (u0 − c)2

)
− 1

T0
k2(u0 c)v = 0. (2.1)

Here, c = ω/k is the phase velocity of the wave and v(z) is a perturbation of the vertical gas velocity
component. The pressure perturbation can be expressed in terms of v(z) as follows:

p(z) =
μ
ik

(u0 − c)dv/dz − vdu0/dz
T0 − (u0 − c)2 .

For the sake of brevity, we omitted the coefficient ei(kx−ωt) of v(z) and p(z). The Rayleigh equation
can have two singularities [8, 9]. The first singularity, located at a critical point zc in which u0(zc) = c,
leads to a singularity of the solution discussed below. The second singularity, located at a point in which
T0(z) − (u0(z) − c)2 = 0 and the phase velocity of the wave is equal to the local sonic speed, is removable.

We will consider the boundary conditions for the Rayleigh equation. We will impose the no-flow condi-
tion on the plate surface z = 0. The second condition will be imposed at the outer boundary layer edge z = δ ,
where δ is the layer thickness divided by the plate thickness. We will assume that flow is homogeneous when
z> δ , u0 ≡M∞ is the free-stream Mach number, and T0 ≡ 1. The Rayleigh equation (2.1) can be reduced to
an equation with constant coefficients and has the solution v(z) = Ceγz, where γ =−

√
k2 − (M∞k − ω)2.

In this case we must choose the branch of the radical from the condition of perturbation damping as z→+∞
such that Reγ < 0 when Imω ≫ 1. Outside the boundary layer this exponential solution must be matched
with the solution inside the boundary layer. Thus, the boundary conditions have the form:
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SINGLE-MODE PLATE FLUTTER 419

v =−iω (z = 0),
1
v

dv
dz

= γ (z = δ ). (2.2)

The solution of the Rayleigh equation can be constructed in the form of a convergent series in powers
of k2 [8]. Waves of length significantly larger than the boundary layer thickness are of practical interest for
real plates. Therefore, we will assume that ∣k∣ ≪ 1 and restrict out attention to the zeroth approximation.
Neglecting the second term of the order of k2 in (2.1), we have

d
dz

(
(u0 − c)dv/dz − vdu0/dz

T0 − (u0 − c)2

)
= 0

The general solution of this equation has the form:

v(z) =

(
c1

( z∫

0

T0(ζ )dζ
(u0(ζ ) − c)2 − z

)
+ c2

)
(u0(z) − c), (2.3)

p(z)≡ c1μ
ik
. (2.4)

We can readily see that (2.3) has a singularity at the critical point which cannot be removed within
the framework of the inviscid approximation. When the viscosity tends to zero the solutions, which are
the limit of the solutions of the viscous system, namely, an analog of the Orr–Sommerfeld equation in the
incompressible case, can be constructed such that integration was carried out along a contour in the complex
plane z bypassing the critical point from below [8, 9]. In particular, when Imc > 0 (growing perturbations)
integration can be carried out along the real axis z. In the case Imc≤ 0 (neutral and damped perturbations)
integration must be carried out in the complex plane bypassing the singularity.

The presence of the singularity leads to the fact that the function v(z) is complex when c ∈ R and has a
discontinuity at the critical point. If we take c1 and c2 so that v ∈ R when z > zc, then v acquires suddenly
(jumpwise) an imaginary part when z < zc. Physically, this means that the perturbation phase changes
jumpwise in passing through the critical point. In homogeneous flow there is no such a phase discontinuity
but in our case this may lead to stabilization or destabilization of perturbations in the boundary layer.

Substituting (2.3) in the boundary conditions (2.2), from (2.4) we obtain the pressure perturbation on the
plate surface

p(0) =−μ

⎛
⎜⎝
⎛
⎝

(
M∞k − ω

)2

√
k2 − (M∞k − ω

)2

⎞
⎠
−1

+

⎛
⎝

δ∫

0

T0(ζ )dζ
(u0(ζ ) − c)2 − δ

⎞
⎠
⎞
⎟⎠
−1

.

For the further analysis it is convenient explicitly to distinguish the boundary layer thickness δ from the
integral. For this purpose we make the change of variable ζ = δη

δ∫

0

T0(ζ )dζ(
u0(ζ ) − c

)2 = δ
1∫

0

T0(η)dη
(u0(η) − c)2 .

In what follows, the functions u0(η) and T0(η) will be considered to be determining the boundary layer
profile, η varying from 0 to 1.

Substituting the deflection w = ei(kx−ωt) and the pressure perturbation p = p(0)ei(kx−ωt) in (1.1), we
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obtain the dispersion relation

F(k, ω) =
(
Dk4 + M2

wk2 − ω2)

− μ

⎛
⎜⎝
⎛
⎝ (M∞k − ω)2√

k2 − (M∞k − ω
)2

⎞
⎠
−1

+ δ

⎛
⎝

1∫

0

T0(η)dη(
u0(η) − c

)2 − 1

⎞
⎠
⎞
⎟⎠
−1

= 0. (2.5)

When δ → 0 it is exactly transformed in the dispersion relation of a plate in homogeneous potential
flow [1] (

Dk4 + M2
wk2 − ω2) − μ

(
M∞k − ω)2√

k2 − (M∞k − ω)2
= 0.

The solution ω(k) of the dispersion relation can readily be obtained on the assumption that μ ≪ ∣k∣,
μ ≪ ∣ω ∣. Using the Taylor expansion in μ , we have

ω(k, μ) = ω(k, 0) + μ
∂ω
∂ μ

∣∣∣∣
μ=0

+ o(μ) = ω(k, 0) − μ
∂F
∂ μ

/
∂F
∂ω

∣∣∣∣
μ=0

+ o(μ).

Hence we have correct to small terms of the order of μ

ω(k, μ) = ω(k, 0) − μ
2ω(k, 0)

⎛
⎜⎝
⎛
⎝ (M∞k − ω)2√

k2 − (M∞k − ω
)2

⎞
⎠
−1

+ δ

⎛
⎝

1∫

0

T0(η)dη(
u0(η) − c

)2 − 1

⎞
⎠
⎞
⎟⎠
−1

. (2.6)

The expression in parentheses should be calculated for μ = 0.
We note that the smallness of μ as compared with k and ω is a significant assumption on which too long

waves must be eliminated from consideration. This assumption holds in studying the single-mode flutter but
it is invalid for flutter of the coupled type since in this case μ ∼ ω [1].

3. EFFECT OF THE BOUNDARY LAYER ON THE GROWING WAVE

We will investigate the effect of the boundary layer on growth of the traveling waves in an infinite plate.
We will distinguish three types of waves: 1) the wave is growing and the perturbation is supersonic with
respect to flow 0 < c < M∞ − 1 in the absence of the boundary layer; 2) the wave is neutral and the
perturbation is subsonic M∞ − 1 < c < M∞ + 1 in the absence of the boundary layer; 3) the wave is
damped and the perturbation is supersonic c>M∞ + 1 or c< 0 in the absence of the boundary layer.

Initially, we will consider the waves of the first type. We introduce the notation

A =

√
k2 − (M∞k − ω

)2

(
M∞k − ω

)2 =

√
1 − (M∞ − c

)2

k
(
M∞ − c

)2 ,

B = δ

⎛
⎝

1∫

0

T0(η)dη(
u0(η) − c

)2 − 1

⎞
⎠ ,

then
Imω(k, μ) =− μ

2ω(k, 0)
Im(A + B)−1.

Since the wave is growing when δ = 0, then ImA = a > 0 and ReA = 0.
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SINGLE-MODE PLATE FLUTTER 421

Fig. 2. Level lines of Im(A + B)−1: straight line 1 corresponds to Im(A + B)−1 = 0; curves 2 correspond to the family
of lines below straight line 1 where Im(A + B)−1 > 0; curves 3 to the family of lines above straight line 1 when Im(A +
B)−1 < 0; and 4 corresponds to the region in which Im(A + B)−1 < ImA−1 < 0.

We can readily show that the set of B which are the level lines of Im(A + B)−1 are circles with the centers
on the imaginary axis that pass through the point (0; −a). If the second intersection of the circle and the
imaginary axis lies above this point then Im(A + B)−1 < 0, if below then Im(A + B)−1 > 0. The level line
Im(A + B)−1 = ImA−1 is a circle that passes through the point B = 0. The case Im(A + B)−1 = 0 (neutral
perturbations) corresponds to a horizontal straight line that passes through the point (0; −a) (Fig. 2).

We will fix the phase velocity c and consider the quantity Im(A + B)−1 as a function of the boundary
layer thickness δ , assuming that the profiles u0(η) and T0(η) are given. The quantity A is independent of δ ,
while B depends linearly on δ . Then the values of B in the complex plane corresponding to various δ lie on
a ray issuing from the origin. Two cases are possible. When ImB≥ 0 this ray is directed upward or horizon-
tally. In this case the wave traveling along the plate is growing for any boundary layer thickness, the wave
growth rate being always lower than that in the absence of the boundary layer and tending monotonically to
zero as δ → ∞.

In the second case ImB < 0 and the ray is directed downward. When 0 < δ < δ1 the growth rate
of the wave is positive in the presence of the boundary layer and higher then in its absence, namely, the
ray intersects the circle Im(A + B)−1 = ImA−1 when δ = δ1. When δ1 < δ < δ2 the growth rate is
also positive but less than in the absence of the boundary layer, namely, the ray intersects the straight line
Im(A + B)−1 = 0 when δ = δ2. Finally, the wave becomes damping when δ > δ2.

The value of ImB which determines the qualitative behavior of the wave for various δ can be calculated
in the explicit form. The integral in the expression for B has a singularity at η = ηc which must be bypassed
from below in the course of integration. We will expand the boundary layer profiles in the Taylor series in
the neighborhood of η = ηc:

T0(ξ ) = T00 + T01ξ + . . . , u0(ξ ) = c + u01ξ + u02ξ 2/2 + . . . , ξ = η − ηc.

Here, T0n and u0n are the nth derivatives of the functions at the critical point. We have

T0(ξ )(
u0(ξ ) − c

)2 =
T00 + T01ξ + . . .(

u01ξ + u02ξ 2/2 + . . .
)2 =

T00

u2
01

1
ξ 2 +

1

u2
01

(
T01 − T00

u02

u01

)
1
ξ

+ reg. terms (3.1)

Since the term with 1/ξ is the source of the imaginary part of B, we obtain

ImB =
πδ
u2

01

(
T01 − T00

u02

u01

)
=−πδ

T 2
0

u′30

(
u′0
T0

)′
.

FLUID DYNAMICS Vol. 47 No. 3 2012



422 VEDENEEV

Here, the prime denotes the derivative with respect to z at the critical point. Thus, in addition to the
layer thickness, ImB is determined only by the local behavior of the velocity and temperature profiles in
the neighborhood of the critical point. The values of ReB depend on all the regular terms of the expansion
obtained above, i.e., they are determined by the profiles on the entire interval [0; 1].

In the case of ImB < 0 and 0 < δ < δ1 the growth rate of the wave is higher in the presence of the
boundary layer then in its absence. The closer ∣ReB∣ to zero (the closer the direction of the ray to vertical),
the higher the growth rate due to the boundary layer effect. In the limiting case ReB = 0 and ImB→−a
the quantity Im(A + B)−1 together with Imω tend to infinity as δ → δ1.

As c→ 0 and c→M∞, the behavior of ReB can be clarified in the generic case. After integrating (3.1),
the principal term ReB is

1−ηc∫

−ηc

T00

u2
01

1
ξ 2 dξ =− T00

u2
01

1
ξ

∣∣∣∣
1−ηc

−ηc

=−T00(ηc)

u2
01(ηc)

(
1

1 − ηc
+

1
ηc

)
.

Thus, as c→ 0 and c→M∞ (ηc→ 0 and ηc→ 1, respectively), ReB→−∞, i.e., the direction of the ray
tends to horizontal.

4. EXAMPLE: PROFILES OF ACCELERATED AND DECELERATED FLOWS

We will consider the profiles developed in the self-similar boundary layers [10, Ch. XIII] characterizing
by the parameter β . The flow is accelerated when β > 0, decelerated when β < 0, and homogeneous when
β = 0. Analogs of such self-similar boundary layers develop in incompressible fluid when the free-stream
velocity depends on the coordinate in accordance with the power law: u∞ = Cxm, where β = 2m/(m + 1).
We will assume that the plate wavelength is much less than the characteristic dimension of the zone in which
the free-stream velocity varies significantly. In other words, the decelerated or accelerated flow means the
corresponding boundary layer profile considering, as before, the main flow to be homogeneous.

When the Prandtl number Pr = 1 and the plate is heat-insulated the velocity distribution can be found by
means of the solution f (ξ ) of the equation

f ′′′ + f f ′′ = β ( f ′2 − 1), f (0) = f ′(0) = 0, f ′(+∞) = 1.

The velocity as a function of the self-similar variable ξ can be given by the expression u0(ξ ) = f ′(ξ ).
For each ξ the physical coordinate z can be restored as follows:

z = C

ξ∫

0

T0(u0(ξ ))dξ .

The temperature distribution T0(u0) is given by the same expression as for adiabatic flow:

T0(u0) = 1 +
γ − 1

2

(
M2

∞ − u2
0). (4.1)

We considered profiles 1–5 corresponding to β = 2, 0.5, 0, −0.14, and −0.199 (Fig. 3a). The last
case corresponds to the limiting value of β when du0(0)/dz < 0 for β < −0.199 and the boundary layer
separates from the plate. The calculations were carried out for parameters corresponding to a steel plate in
the atmosphere at the altitude of 3 km, M∞ = 1.6, and

D = 23.9, Mw = 0, μ = 0.00012, γ = 1.4. (4.2)

As can be seen in Fig. 3, for profiles 1 and 2 ImB > 0 and the growth in plate oscillations decays with
increase in δ (Fig. 4). For profiles 3–5 ImB < 0 in the supersonic zone, i.e., the boundary layer increases
the oscillation amplitude when δ < δ1 (Fig. 4). In this case ∣ReB∣ is fairly small on a significant interval
c <M∞ − 1 for profiles similar to profile 5 and Imω increases very substantially in the boundary layer.
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SINGLE-MODE PLATE FLUTTER 423

Fig. 3. Velocity profiles of decelerated and accelerated flows above a heat-insulated plate for parameters (4.2), M∞ = 1.6,
and Pr = 1: velocity profiles (a); generalized curvature (b); ReB (c), and ImB (d); curves (1–5) correspond to β = 2.0, 0.5,
0.0, −0.14, and −0.199, respectively.

5. RELATION BETWEEN PLATE DESTABILIZATION BY THE BOUNDARY LAYER
AND STABILITY OF THE BOUNDARY LAYER ITSELF

We will consider the effect of the boundary layer on the stability of a plate in connection with the stability
of the absolutely rigid plate boundary layer itself. In this case the boundary conditions are as follows:

v = 0, z = 0,
1
v

dv
dz

= γ , z = 1.

From (2.3) we can obtain the eigenvalue equation

(
(M∞k − ω)2√

k2 − (M∞k − ω)2

)−1

+ δ

⎛
⎝

1∫

0

T0(η)dη(
u0(η) − c

)2 − 1

⎞
⎠= 0

or
A + B = 0. (5.1)

The solutions of this equation yield the spectrum of eigenvalues of c when ∣k∣ ≪ 1; even if for a single
of them Imc> 0, the boundary layer is unstable.

If the boundary layer is unstable then there is its neutral perturbation lying on the boundary of the unstable
interval of k. If this perturbation is supersonic, i.e., c ∈ [0; M∞ − 1], then ReA = 0 and ImA> 0. Then in
Fig. 2 the ray is directed vertically downward. Thus, in order for longwave supersonic perturbations of the
boundary layer to be unstable it is necessary that in Fig. 2 the ray to be directed vertically downward for a
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Fig. 4. Function Imω(δ ) for profiles (1–5) in Fig. 3 for parameters (4.2), M∞ = 1.6, and k = 0.06.

certain c ∈ [0; M∞ − 1], whereas for significant enhancement of the plate oscillations it is sufficient only
the proximity to the vertical.

The necessary condition of existence of a neutral subsonic perturbation (M∞ − 1 < c < M∞ + 1,
ImA = 0) follows from (5.1): ImB = 0, i.e., there must exist a point in the subsonic part of the boundary
layer at which (u′0/T0)′ = 0. This point will be called the generalized inflection point of the profile. This
condition is necessary and sufficient without the assumption on smallness of k [8, 9]. If a neutral subsonic
perturbation exists (i.e., a generalized inflection point exists) then only the subsonic perturbations grow [11].

The profiles of Sect. 4 are stable with respect to longwave supersonic perturbations. In fact, as can
be seen from Fig. 3, ReB does not vanish for any real values of c < M∞ − 1, although it can be made
fairly small when β = −0.199. This yields strong growth in Imω when δ < δ1 (Fig. 4). However, the
boundary layer is unstable with respect to subsonic perturbations when β = 0, −0.14, and −0.199 since in
the subsonic part there is a point at which ImB = 0 (Fig. 3d).

If the boundary layer profile is such that the generalized inflection point lies in the supersonic part of the
boundary layer, such a layer can be stable but in this case it can yield an arbitrary strong increase in the plate
oscillations. For this purpose we must have ImB< 0 when c ∈ [0; M∞ − 1] and ReB must be negative and
close to zero. In this case for the stability of the layer itself we must have ReB ∕= 0 when c ∈ [0; M∞ − 1]
(supersonic perturbations) and ImB ∕= 0 when c ∈ [M∞ − 1; M∞] (subsonic perturbations).

As an example, we will consider the temperature profile (4.1) and the family of the velocity profiles
parameterized by the parameter s∈ [0; 1] specified by the natural cubic spline passing through the following
points:

u0(0) = 0, u0(0.105 − 0.045s) = 0.12M∞,

u0(0.155 − 0.045s) = 0.21M∞, u0(0.6) = 0.88M∞, u0(1) = M∞.
(5.2)

In Fig. 5a we have plotted the graphs of u0(η) for several s. When the profile is specified using a cubic
spline, i.e., a function with continuous derivatives up to the second derivative, this implies that the spline can
be approximated with an arbitrary accuracy (together with the first and second derivatives) by an analytic
function.

In Figs. 5c and 5d we have plotted the graphs of ReB(c) and ImB(c) for these profiles when
c ∈ [0; M∞ − 1]. All the profiles are stable with respect to subsonic perturbations (Fig. 5b). When
s = 0 the graph of the function ReB(c) is tangent to the horizontal axis, i.e., there is a neutral supersonic
perturbation; the supersonic perturbations are damped when s> 0. Thus, all these profiles are stable.

However, as s→ 0, the ray in Fig. 2 tends to the vertical when c ≈ 0.21. As δ → δ1, this leads to
the unbounded rapid amplification of the plate oscillations. In Fig. 6 we have reproduced the results of
calculations of Imω(δ ) for parameters (4.2), M∞ = 1.3. We can see that the quantity Imω can increase by
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SINGLE-MODE PLATE FLUTTER 425

Fig. 5. Velocity profiles (5.2) for a heat-insulated plate and parameters (4.2), M∞ = 1.3, and Pr = 1: velocity profiles (a);
generalized curvature (b); ReB (c), and ImB (d); curves (1–6) correspond to s = 0, 0.2, 0.4, 0,6, 0.8, and 1, respectively.

a factor of more than two as compared with homogeneous flow when s = 0.2, by a factor of more than four
when s = 0.1, and the value of Imω can be arbitrary large as s→ 0.

We note that the arbitrary rapid growth of the wave violates the assumption on which expansion (2.6)
was obtained, namely, this expansion will not be linear in μ . Actually, we can only conclude that Imω ≳ μ .
The situation is analogous to [12]: unbounded amplification exists also in flow without boundary layer as
c→M∞ − 1, in this case the nonlinear expansion in μ yields Imω ∼ μ2/3.

6. EFFECT OF THE BOUNDARY LAYER ON THE NEUTRAL
AND DAMPED WAVES

The question of the effect of the boundary layer when the wave in potential flow is growing, i.e. 0< c<
M∞ − 1, was considered above. We will now assume that the wave is damped, i.e., M∞ + 1 < c or c < 0.
Then A is purely imaginary and ImA< 0. There is no critical point and ImB = 0. Then 0< Im(A + B)−1 <
ImA−1, i.e., the boundary layer always leads to certain reduction in the wave damping but cannot lead to its
growth. The damped waves remain damped waves.

Let now a perturbation be neutral, i.e., M∞ − 1 < c < M∞ + 1 and ImA = 0. There is no critical point
when M∞ ≤ c ≤ M∞ + 1 and ImB = 0. In the presence of the boundary layer the perturbation remains
neutral.

When M∞ − 1 < c < M∞ there is a critical point and ImB ∕= 0. For flows with the generalized-convex
profile (u′0/T0)′ < 0 and sign ImB = −sign((u′0/T0)′) > 0. Hence Im(A + B)−1 < 0 and Imω > 0, i.e., the
wave is destabilized by the boundary layer. In this case the boundary layer itself is stable. This result is
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Fig. 6. Function Imω(δ ) for profiles (5.2) and parameters (4.2), M∞ = 1.3, and k = 0.043 (c≈ 0.21): curves (1–6) corre-
spond to s = 0, 0.1, 0.2, 0.4, 0.6, and 1, respectively.

similar to that obtained in [13] where it was shown that elasticity of the plate leads to destabilization of the
system as Re→ ∞ for the Blasius boundary layer profile in incompressible fluid.

Let now the profile have a generalized inflection point zinfl in the subsonic part of the layer. To be
specific, we will assume that (u′0/T0)′ > 0 when z < zinfl and (u′0/T0)′ < 0 otherwise (such a situation is
characteristic of the profiles on the flat heat-insulated plate). Then the waves which have the critical point
when z > zinfl, i.e., M∞ − 1 < u0(zinfl) < c <M∞, are destabilized by the boundary layer since sign ImB =
−sign((u′0/T0)′)> 0 and Im(A + B)−1 < 0. To the contrary, the waves with the phase velocity M∞ − 1<
c < u0(zinfl) are stabilized.

7. LARGE BUT FINITE PLATE

In this section we will investigate the effect of the boundary layer on the plate of large dimensions. Its
eigenfunctions are constructed using the asymptotic method [7] in the form of superposition of waves in an
infinite plate which satisfies the boundary conditions at the edges of a finite plate.

In accordance with [7], as the plate width L→ ∞, the limiting set of the eigenfrequency spectrum is
independent of the boundary conditions at the plate edges and represents a curve Ω in the complex plate ω
given by the equation Imk2(ω) = Imk3(ω), where k2 and k3 are the branches of solutions of the dispersion
relation of the unbounded system (2.5) corresponding to the forward and backward traveling waves (k2 and
k3, respectively.) Since μ is a small parameter, then, assuming that ω = ωR + iωI , ωI ≪ 1, we have the
expansion

k j
(
ωR + iωI , μ

)
= k j

(
ωR, 0

)
+ i

ωI

g j
+ μΔ(k j) + o

(
ωI , μ

)
, (7.1)

where

Δ(k j) =
1

2k j
(
M2

w + 2Dk2
j

)
⎛
⎜⎝
⎛
⎝

(
M∞k j − ω)2√

k2
j −

(
M∞k j − ω

)2

⎞
⎠
−1

+ δ

⎛
⎝

1∫

0

T0(η)dη(
u0(η) − c j

)2 − 1

⎞
⎠
⎞
⎟⎠
−1

.

Here, c j = ωR/k j and gj = dωR/dk j are the phase and group velocities, respectively. Introducing the
notation

g(ω) = g2 =−g3 =
2Dk3

2 + k2M2
w

ω
,

we obtain the equation of the asymptotic curve Ω
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Fig. 7. Curve Ω for profile 1 in Fig. 3. Vertical broken straight line corresponds to transonic transition, c = M∞ − 1:
curves (1–4) correspond to δ = 0, 0.5, 1, and 2, respectively.

ωI =−μg(ωR)

2
Im(Δ(k2(ωR)) − Δ(k3(ωR)))

=− μ
2ωR

Im
(
(A + B)−1

2 + (A + B)−1
3

)
,

(7.2)

where A and B are the quantities determined earlier for the forward and backward traveling waves.

Thus, in gas flow with a boundary layer the plate oscillation growth rate is the arithmetic mean of the
growth rates of the waves traveling upstream and downstream.

By analogy with the wave in the infinite plate, we will individually consider the oscillations depending
on the type of the forward traveling wave, namely, growing, neutral, or damped (Sec. 3). Initially, we will
consider the first case. If the boundary layer profile is generalized-convex, then the forward traveling wave
remains growing but its growth rate decreases. A damped wave traveling upstream remains the damped
wave but its damping rate also decreases. Generally speaking, the total action equal to the arithmetic mean
of imaginary parts of the frequencies can lead to both increase and decrease of the oscillation growth rate
of the finite plate. For typical boundary layer profiles the calculations show that the total action leads to a
decrease in the oscillation growth rate or to damping (see Sec. 8).

When the boundary layer profile has a generalized inflection point and there is a zone in the supersonic
zone with ImB < 0, then the total action is growing over a certain frequency range where the forward
traveling wave also grows in the boundary layer with δ < δ1. This effect is particulary characteristic of the
profiles of decelerated flow for which the growth of the forward traveling wave can be large (Sec. 4).

We will now consider the second class of the oscillations corresponding to subsonic waves traveling
forward. If the profile is generalized-convex or has a generalized inflection point in the supersonic part of
the layer then for the phase velocities close to M∞− 1 the growth rate of the forward traveling wave can
be significant and greater than the damping of the backward traveling wave. In this case the total effect is
growth of oscillations of the finite plate.

When the profile has a generalized inflection point in the subsonic part of the boundary layer located
fairly far from the transonic point, then growth of the forward traveling wave is insignificant and not greater
than damping of the backward traveling wave. The total effect is the damping of oscillations of the finite
plate.

For the third class of oscillations both the forward and backward traveling waves are damped and such
oscillations will be also damped in the finite plate.
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Fig. 8. Curve Ω for profile 5 in Fig. 3. Vertical broken straight line corresponds to transonic transition, c = M∞ − 1:
curves (1–4) correspond to δ = 0, 0.5, 1, and 2, respectively.

8. EXAMPLES

We will summarize the results obtained in the previous section. In the case of the generalized-convex
boundary layer profile the supersonic and subsonic oscillations of the plate are stabilized and destabilized,
respectively. In the case of the profile with the generalized inflection point, in the subsonic part of the layer
the supersonic oscillations grow more rapidly than in homogeneous flow when δ < δ1 and are damped when
δ > δ2; the subsonic oscillations are always damped.

We will consider the generalized-convex profile of accelerated flow corresponding to β = 2.0 (profile 1
in Fig. 3). In Fig. 7 we have reproduced the results of calculations of Ω. We can see that for the supersonic
oscillations Imω decreases and becomes negative with increase in the boundary layer thickness δ . At the
same time, the subsonic perturbations are destabilized by the boundary layer.

In Fig. 8 we have reproduced the results of analogous calculations for β = −0.199 (profile 5 in Fig. 3).
We can see that the instability of supersonic perturbations increases significantly when δ < δ1: Imω in-
creases for growing perturbations and the damped perturbations become growing. If δ > δ2 (curve 2 in
Fig. 8), the supersonic perturbations are completely stabilized. The subsonic perturbations remain damped
since the generalized inflection point corresponds to u0 ≈ 1.07M∞ >M∞ − 1.

Summary. The effect of the boundary layer formed on the plate surface on the stability of waves in the
infinite plate and on the single-mode flutter of a plate of large but finite dimensions is investigated.

In the case of generalized-convex profiles (characteristic of accelerated flow) the supersonic and subsonic
plate oscillations are stabilized and destabilized, respectively.

In the case of profiles with the generalized inflection point lying in the subsonic part of the layer (char-
acteristic of homogeneous and decelerated flows) the supersonic perturbations are destabilized when δ < δ1

and stabilized when δ > δ2; the subsonic perturbations are damped.
The relation between the effect of the boundary layer on the stability of the plate and the stability of the

boundary layer itself is investigated. An example of stable boundary layers for which the growth rate of the
plate oscillations can be made arbitrary large is given.

The work was supported by the Russian Foundation for Basic Research (projects Nos. 10-01-00256 and
11-01-00034).
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