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There are two types of aeroelastic instabilities: divergence and flutter. Flutter is an oscillatory loss of stability,

whereas transition to divergence occurs at zero frequency; that is, it is a static instability. A general divergence

mechanismdescribed in textbooks consists of a decrease of one of the natural frequencies down to zero due to negative

aerodynamic stiffness, coalescence with its paired frequency, and (after the coalescence) transformation to one

damped and one growing frequency. Most examples of this mechanism use quasi-steady aerodynamics that, at first

sight, is suitable for divergenceanalyses because of its static nature. In this study, it is shown that,whenusingunsteady

aerodynamics (Theodorsen theory), the analytical structure of eigenfrequencies essentially changes; namely, no

frequency coalescence occurs but “structural” eigenfrequencies become damped. The divergence mode is not a

continuation of a naturalmode, but it separates froma continuous spectrum that exists in the aeroelastic systemdue to

the wake behind the wing when unsteady aerodynamics is used but is absent in the quasi-steady case.

Nomenclature

a = parameter of the elastic axis location,

xf∕b − 1

b = half of the chord length; c∕2, m
c = chord length, m
e = distance from the aerodynamic center to

the elastic axis rated to the chord length,

��1∕2� � a�∕2 � �xf − c∕4�∕c
k = reduced frequency, ωc∕�2V�
L = aerodynamic force per unit length, N∕m
Lz, L_z, Lθ , L_θ = oscillatory aerodynamic derivatives

M = aerodynamic moment per unit length, N
Mz,M _z,Mθ, M _θ = oscillatory aerodynamic derivatives

m = wing mass per unit area, kg∕m2

Qb, Qt = generalized aerodynamic forces, N, N ⋅m
qb = generalized coordinate corresponding to

bending wing motion, m
qt = generalized coordinate corresponding to

torsional wing motion
s = wing span, m
V = freestream flow speed, m∕s
Vdiv = divergence speed, m∕s
xf = distance from the leading edge to the elastic

axis, m
ρ = flow density, kg∕m3

ξb = Laplace transformation of generalized
coordinate qb, m ⋅ s

ξt = Laplace transformation of generalized
coordinate qt, s

ω = eigenfrequency, rad∕s
ωb;t = natural circular frequency (bending and

torsional, respectively), rad∕s

I. Introduction

I N MOST aeroelasticity textbooks [1–3], divergence and flutter
are considered separately: divergence as a static instability, where

steady aerodynamics is employed; and flutter as a dynamic instabil-
ity, where the use of unsteady aerodynamics is crucial for correct
flutter prediction. Even when divergence is considered within the
framework of a dynamic system, at best, quasi-steady aerodynamics

is used. In this paper, we reanalyze the classical problem of instability
of a two-degree-of-freedom (bending and torsional) system by
focusing on divergence but using (unlike most of other studies) fully
unsteady Theodorsen aerodynamics. We prove that, first, in addition
to the spectrum of eigenfrequencies (two paired eigenfrequencies for
a two-degree-of-freedom system), there exists a continuous spectrum
consisting of monotonically damped frequencies, which originates
from the wake behind the oscillating wing. Second, the growing
divergence eigenfrequency is not a smooth continuation of a structural
natural frequency. Instead, all “structural” frequencies becomedamped
at a postcritical flow velocity, whereas the divergence mode is an
additional mode that exists only at postcritical speeds and separates
at the divergence speed from the continuous spectrum.
The structure of the paper is as follows. In Sec. II, we introduce a

two-degree-of-freedom aeroelastic model used with variations in all
textbooks. Section III is devoted to the eigenfrequency analysis in the
framework of different simplified aerodynamic formulations that
yield a classical divergence mechanism through the interaction of
paired eigenmodes. However, slight improvement of the aerodynam-
ics immediately yields an unexpected result, namely, inability of the
divergence to originate from a structural natural mode. In Sec. IV, we
reanalyze the problem using fully unsteady aerodynamics and con-
firm this result. We give an analytical proof of nonexistence of the
divergence mode at a subcritical flow speed, which therefore cannot
be a transformed structural mode. To go deeper into this problem, we
give a closed-form solution of the initial-value problem that estab-
lishes the connection between the origin of the divergence mode, the
continuous spectrum, and the branch cut of the Theodorsen function.
In Sec. V, we compare the present results with previous studies that
used various numerical methods. Finally, in Sec. VI, we summarize
the results and discuss possible generalizations to other aeroelastic
problems.

II. Rectangular Wing as a Toy Model

We consider a classical two-degree-of-freedom aeroelastic model
of a thin unswept rectangularwing (Fig. 1), whichwas first studied by
Goland [4]. We will follow the book of Ref. [3], where the equations
of motion are derived in chapter 10.2 by using a simplified aerody-
namic model.Wewill briefly rederive the equations of motion for the
case of fully unsteady aerodynamics to analyze various simplifica-
tions, as well as the fully unsteady model.
Thewing span is s and the chord is c. Wewill assume that thewing

cross section is a thin plate so that the aerodynamic center is located at
c∕4 downstream from the leading edge, whereas the elastic axis is
located at xf from the leading edge. The two degrees of freedom

correspond to bending and torsional modes, with EI and GJ being
the bending and torsional stiffnesses, respectively (Fig. 1). Assuming
simple bending and torsional shapes, the general wing motion has
the form
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where qb and qt area the generalized coordinates corresponding to

the bending and torsion. Applying Lagrange’s equation as was done

in Ref. [3] (Chap. 10.2.1), we find the equations of motion:
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whereQb andQt are the generalized aerodynamic forces correspond-

ing to the bending and torsional motions. To calculate Qb and Qt,

consider the lift and moment produced by the flow. In this and the

next section, we will restrict ourselves to the harmonic motion of the

wing, which is sufficient for both divergence and flutter analyses.
To calculate the unsteady aerodynamic lift andmoment, wewill use

a strip theory, assuming that aerodynamic forces produced by each

cross section can be taken from a corresponding two-dimensional

problem for a thin plate, where the lift-curve slope is 2π. Let the wing
undergo harmonic motion with elastic axis deflection of z � z0e

iωt

and pitch of θ � θ0e
iωt. The two-dimensional aerodynamic forces are

readily given by the Theodorsen theory, which is a linearized solution

of the two-dimensional (2-D) problem for a thin oscillating plate in

inviscid incompressible fluid flow (Ref. [5], Ref. [1] Chaps. 5–6,

Ref. [2] Chap. 6.9, and Ref. [3] Chap. 9.3):

L�
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Here, L and M are the 2-D aerodynamic lift force and moment with

respect to the elastic axis, ρ and V are the flow density and velocity,

b � c∕2 is the semichord, a � xf∕b − 1 is a parameter of the elastic

axis location with respect to the midchord, k � ωc∕�2V� � ωb∕V is

the reduced frequency, andC�k� is the Theodorsen function defined as
either

CH�k� �
H�2�

1 �k�
H�2�

1 �k� � iH�2�
0 �k�

(3)

or

CK�k� �
K1�ik�

K0�ik� � K1�ik�
(4)

Note that functions defined by Eqs. (3) and (4) coincide forRek ≥ 0
so that the use of one of these formulas is identical for practical

calculations. However, they have different branch cuts in the entire

complex k plane, which is crucial for the correct analysis of eigenfre-
quency branches, as will be shown in the following. We also note that

the oscillation frequency ω in Eq. (2) is not restricted to be real; that

is, any sinusoidal, exponentially damped and exponentially growing

motions are suitable. This fact is easily seen because L�ω� andM�ω�
are analytical complex functions of ω, which means that, even if

derived for real ω, those functions are analytically continued to the

complexω planewith branch cuts ofC�k� properly taken into account.
As a historical note, a more general solution also accounting for

deformable wings was independently obtained by Sedov [6] in 1936:

one year after Theodorsen [5].
The expressions of Eq. (2) can be rewritten by using so-called

oscillatory aerodynamic derivatives as follows:

L � ρV2b
n
�Lz � ikL_z�

z0
b
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o
eiωt

M � ρV2b2
n
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b
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o
eiωt (5)

where the oscillatory aerodynamic derivatives are (Ref. [3]

Chap. 9.4)
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(6)

andC�k� � F�k� � iG�k�.Note that the expression forM _θ inRef. [3]

(Chap. 9.4) has a misprint, and thus differs from the preceding

formula.
To derive generalized aerodynamic forcesQb andQt, consider the

elementary work done by these forces over incremental deflections:

δW �
Z

s

0

L�y�
�
−
�
y

s

�
2

δqb

�
dy�

Z
s

0

M�y�
�
y

s

�
δqt dy

In this expression, L�y� and M�y� are obtained from Eq. (5)

by substitution of the bending and torsion span mode shapes:

z0 � �y∕s�2qb and θ0 � �y∕s�qt. The minus sign in the work done

by lift force is because the z axis is directed downward (Fig. 1) to be
consistent with the notations of Ref. [3]. Performing calculations, we

find

xf s

c

x

y

z

V

torsionbending

Fig. 1 Rectangular wing and its bending and torsional degrees of freedom.
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Substituting these expressions into Eq. (1), and recalling that
b � c∕2, we finally obtain aeroelastic equations of motion that yield
the following eigenvalue problem:

F �ω� � det�−ω2M� iωDa�k� � �Ka�k� � K�� � 0 (8)

where
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In this study, we neglect the structural damping for clarity because
it does not affect the principal results in any way.
The eigenvalue problem [Eq. (8)] is not algebraic, as it might seem

at first sight. Eigenfrequency ω is not only explicitly present in the
equation but also implicitly present in aerodynamic matrices, which
are functions of the reduced frequency of k � ωb∕V. Hence, we
cannot a priori guarantee the existence of four (and only four) roots,
which would be the case if aerodynamic matrices are independent
from k. Moreover, in the following, we will show that the number of
solutions changes when crossing the divergence speed.
The eigenvalue problem is solved numerically by an iterative

method. At the first iteration, we assume k � 0, calculate the corre-
sponding aerodynamic matrices (M _θ and L_θ are forced to be zero at

the first iteration, as discussed in Ref. [3] (Chap. 9.4), and solve

Eq. (8) with respect to ω, obtaining four roots: ω0
n, n � 1–4. One of

the roots is chosen and calculated by subsequent iterations. Assume

that the jth iteration of the root ωj is calculated. We recalculate

kj � ωjb∕V, recalculate the aerodynamic matrices, and again solve
Eq. (8) with respect to ω. Among the four roots, we choose the one

closest to ωj, which gives the next-iteration root ωj�1. Iterations are
repeated until the convergence is achieved with a given accuracy. For
the case of slow convergence, which occurs near the divergence
boundary, weighting of the �j� 1�th root is used with the relaxation
coefficient ϰ � 0.1:ωj�1

final � �1 − ϰ�ωj�1 � ϰωj.

Calculations are started at sufficiently small V, where each
solution is associated with a wing eigenmode in still air. Next, the
velocity is gradually increased, with the initial guess of k taken from

the converged solution from the previous step in velocity. In this way,

we obtain a continuous branch of eigenfrequencies with the velocity

V as a parameter.
We emphasize that the iterative procedure described converges to

the exact solution of the eigenvalue problem [Eq. (8)] for any V: no
matter if the eigenmode is damped, neutral, or growing.Wewill show

in the following that the number of roots changes from four to five,

where the additional solution is not a continuation of a natural

frequency, so that the initial guess for this root should be different.

Other well-known methods (“k,” “p-k,” and “g” methods) give the

exact solution only for neutral oscillation, which corresponds to the

critical divergence or flutter speed. These methods will be discussed

in Sec. V.A.
In this study, we will not consider flutter but focus on transition to

divergence. This transition, by definition, occurs through zero eigen-

frequency. Putting ω � 0 (and hence k � 0) and using Lz�0� � 0,
Lθ�0� � 2π,Mz�0� � 0, and Mθ�0� � 4πe, where

e � ��1∕2� � a�∕2 � �xf − �c∕4��∕c

is the distance from the aerodynamic center to the elastic axis rated to

the chord, we immediately derive the divergence speed:

Vdiv �
�����������������
3GJ

ρc2s2eπ

s

The next section is devoted to the divergence mechanism analysis.

III. Divergence Mechanism Through Simplified
Aerodynamics

In the following calculations, we will use the parameters used in

Ref. [3] (Chap. 10.8), which are given in Table 1, that correspond to

the natural circular frequencies of the wing of ωt � 8.92 rad∕s and
ωb � 17.83 rad∕s (torsional and bending, respectively) and the

divergence speed of Vdiv � 54.9 m∕s.

A. Quasi-Steady Aerodynamics

We start with the simplest aerodynamic formulation: quasi-steady

aerodynamics. Taking the limit of k → 0 and C�k� → 1 in Eq. (6),

we have

Lz � 0; L_z � 2π; Lθ � 2π; Mz � 0; M _z � 4πe;

Mθ � 4πe; e � 1

2

�
1

2
� a

�
(10)

Terms L_θ andM _θ have singularities as k → 0; but, as discussed in

Ref. [3] (Chap. 9.4), they are present in Eq. (5) in combination with k
and do not contribute to the quasi-steady lift and moment because

kL_θ�k� → 0 and kM _θ�k� → 0 as k → 0. Hence, the quasi-steady limit

is reduced to

Table 1 Parameters used in calculations

Parameter Value

Wing span s 7.5 m

Chord c 2 m

Elastic axis xf 0.48c

Mass per unit area m 200 kg∕m2

Bending stiffness EI 2 × 107 N ⋅m2

Torsional stiffness GJ 2 × 105 N ⋅m2

Mass axis 0.5c

Air density ρ 1.225 kg∕m3
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b
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� θ
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� a

��
ik
z0
b
� θ0

�
eiωt
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�
_z

V
� θ

�
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which have a straightforward meaning: these are the steady aerody-

namic lift and moment acting on a plate at an angle of attack θ
corrected by an additional angle of attack _z∕V caused by a vertical

motion of the wing.
Substitution into Eq. (8) yields the eigenvalue problem with the

following aerodynamic matrices:

Da � ρV

0
BB@

sc

10
2π 0

−
c2s

8
e2π 0

1
CCA; Ka � ρV2

0
BB@
0

sc

8
2π

0 −
c2s

6
e2π

1
CCA

The result of the calculations is shown inFig. 2.At smallV, thewing
has four slightly damped eigenfrequencies close to natural frequencies:

ω1;3 ≈�ωt (torsionalmode) andω2;4 ≈�ωb (bendingmode). Twoof

themω1;2 are located at the right-hand side of the complexω plane; two

more eigenfrequencies ω3;4 are located symmetrically with respect to

the imaginary axis, and they correspond to exactly the same wing

motions.When the velocity increases, torsional frequenciesω1;3 move

toward each other, coalesce at the imaginary axis ω, and become pure

imaginary. After the coalescence, one of the frequencies moves up

and the corresponding mode is damped; whereas the other moves

down, crosses at V � Vdiv zero frequency, and the corresponding

mode becomes unstable.
This mechanism is a classical transition to divergence. The diver-

gence mode is generated by the interaction of the first (torsion) mode

with its paired frequency due to negative aerodynamic stiffness.

B. Simplified Unsteady Aerodynamics with Real M_θ

Following the book of Ref. [3], we consider a more complicated

aerodynamic model and include the unsteady term M _θ, which was

shown to have the most important effect:

Da�ρV

0
BB@

sc

10
2π 0

−
c2s

8
e2π −

c3s

24
M _θ

1
CCA; Ka�ρV2

0
BB@
0

sc

8
2π

0 −
c2s

6
e2π

1
CCA (12)

As suggested in Ref. [3] (Chap. 9.6), the value M _θ � −1.2 is a

good approximation for the practically important range of real k; that
is why this value is taken as an example (the actual value is not

important for the divergence mechanism discussed in the following).
The results of the calculations shown in Fig. 3 are similar to quasi-

steady aerodynamics. The only change is that the coalescence occurs

at a different velocity, which does not affect the divergence velocity.

5 10 -5 -10 -15 0 

-2 

-4 

4 

2 

Re

Im

a) 

0.5  1.0 -0.5 -1.0 -1.5 0 

-1 
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2 

Re

Im

b) 

1 
2 4 

3 

Fig. 2 Eigenfrequency loci in quasi-steady approximation when changing flow speed V fromV � 10 m∕s (open circles) toV � Vdiv � 54.9 m∕s (filled
circles) and further to V � Vdiv � 5 � 59.9 m∕s (open squares): a) general view, and b) enlarged view around zero frequency.
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Fig. 3 Eigenfrequency loci calculatedwith simplified unsteady aerodynamics with realM_θ when changing flow speedV fromV � 10 m∕s (open circles)
to V � Vdiv � 54.9 m∕s (filled circles) and further to V � Vdiv � 5 � 59.9 m∕s (open squares): a) general view, and b) enlarged view around zero
frequency.
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However, the real value of M _θ is not satisfactory because the
modes are damped, the reduced frequencies k are complex, and the
actual values ofM _θ should be complex.

C. Simplified Unsteady Aerodynamics with ComplexM_θ

The easiest way to take the imaginary part of the reduced frequency
into account is to consider the complex constant value of M _θ. The
eigenvalue problem stays polynomial, but its coefficients become
complex.Hence, the frequency coalescence (in general) does not occur
at any V but changes to a hyperbola-type interaction. Figure 4 shows
the results of the calculation forM _θ � −1.2� i andM _θ � −1.2� 2i
(the value of the imaginary part does not qualitatively change the
eigenfrequency loci), where, instead of coalescence, the eigenfrequen-
cies approach and pass each other. The transition to divergence, of
course, occurs at the same value Vdiv through zero frequency.
This type of mode interaction is common for binary (coupled-

mode) flutter in many aeroelastic systems. However, the same inter-
action does not look satisfactory for the case of divergence. It was
mentioned earlier in this paper that the eigenfrequencies withReω >
0 and Reω < 0 must be exactly symmetrical with respect to the
imaginary axis because they correspond to exactly the same wing
motion. Indeed, for each frequency ω � ωr � iωi and eigenvector

�Xb; Xt�T � �Xbr � iXbi; Xtr � iXti�T

the complex motion is

 
qb

qt

!
�
 
Xb

Xt

!
eiωt �

 
Xbr cos�ωrt� − Xbi sin�ωrt�
Xtr cos�ωrt� − Xti sin�ωrt�

!
e−ωit

� i

 
Xbi cos�ωrt� � Xbr sin�ωrt�
Xti cos�ωrt� − Xtr sin�ωrt�

!
e−ωit

Keeping in mind that only the real and imaginary parts of this
expression separately have physical meaning, we can see that eigen-
frequency ω � −ωr � iωi and eigenvector

�Xb; Xt�T � �Xbr − iXbi; Xtr − iXti�T

correspond to the same real and imaginary parts, i.e., the same
physical motion. Hence, the symmetry of the eigenfrequencies with
respect to the imaginary axis is a fundamental property of any
aeroelastic system. However, this fundamental symmetry is absent
in Fig. 4, and it will obviously be absent for any constant complex
value of M _θ.

A naive solution would consist of considering different constantM _θ
for Reω > 0 and Reω < 0 changing in the sign of ImM _θ . This yields

symmetrical loci ofω1 andω3, but they both stay damped and none of
them transforms to the divergence mode. On the other hand, the
divergence mode does exist because ω � 0 and V � Vdiv satisfies
not only the eigenvalue problemwith simplifiedmatrices [Eq. (12)] but
even with exact matrices [Eq. (9)]. As this divergence eigenfrequency
is not a continuation of the natural frequency branches, it is not clear
where it comes from.
To resolve this problem, we now switch to full unsteady aerody-

namics defined by Eq. (9), and we reanalyze the divergence mecha-
nism, which is a matter in the next section of the paper.

IV. Divergence Mechanism Through the Full Unsteady
Aerodynamics

A. Divergence Modeling Using the Full Theodorsen Theory

When using full Theodorsen aerodynamics [Eq. (9)], the behavior
of the ω1 and ω3 curves becomes symmetrical, but they both
become highly damped (Fig. 5) becauseM _θ, which plays a major role,

becomes essentially complex and ImM _θ�k1� rapidly grows when

Reω1 decreases, as shown in Fig. 6 [note that M _θ�k3� � �M _θ�k1�].
However, if we take the divergencemode (i.e.V � Vdiv andω � 0) as
an initial guess and conduct calculations at V > Vdiv, the numerical
processes converges and give the fifth eigenfrequency branch (Fig. 5).
To analyze where the divergence mode transforms to at low flow

speeds, we started decreasing the speed. However, surprisingly, the
numerical procedure diverges for any velocity lower thanVdiv, and so

-5-10-15 0

-2

-4

4

2

Im

Re

a)

5 10

0.5 1.0-0.5-1.0-1.5 0

-1

1

2

Re

b)

1
24

3

Fig. 4 Eigenfrequency loci calculated with simplified unsteady aerodynamics with complex M_θ when changing flow speed V from V � 10 m∕s (open
circles) toV � Vdiv � 54.9 m∕s (filled circles) and further toV � Vdiv � 5 � 59.9 m∕s (open squares): a) general view, andb) enlarged viewaround zero
frequency.M_θ � −1.2� i (bold lines), and M_θ � −1.2� 2i (thin lines).

5 10-5-10-15 0

-2

-4

4

2
Im

Re

1 24 3

div

Fig. 5 Eigenfrequency loci calculated through full unsteady aerodynam-
ics when changing flow speed V from V � 10 m∕s (open circles) to V �
Vdiv � 54.9 m∕s (filled circles) and further to V � Vdiv � 5 � 59.9 m∕s
(open boxes). Dashed curve shows the continuous spectrum.
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it could be thought that this mode comes from “nowhere,” i.e., has no
continuation from supercritical to subcritical speeds. To demonstrate

that the absence of the divergence mode for V < Vdiv is not a

numerical issue but a real phenomenon, we give a rigorous proof in

the next section.

B. Proof of the Nonexistence of the Divergence Mode at Subcritical
Flow Velocity

Let us have the solution ω � k � 0 at V � Vdiv. We take a small

velocity deviation V � Vdiv � V 0 and find a solution of Eq. (8) that
tends to zero as V 0 → 0; i.e., we find the divergence mode frequency

in the vicinity of the divergence boundary.
Neglecting the ω2 term as infinitesimal and combining aerody-

namic damping and stiffness matrices, we have the eigenvalue prob-

lem [Eq. (8)] in the following form:

det

0
BB@ρ�Vdiv � V 0�2

0
BB@

s

5
�Lz � ikL_z�

cs

8
�Lθ � ikL_θ�

−
cs

8
�Mz � ikM _z� −

c2s

12
�Mθ � ikM _θ�

1
CCA

�

0
BB@
4EI

s3
0

0
GJ

s

1
CCA
1
CCA � 0 (13)

Toobtain aerodynamic derivatives for small k, consider the asymp-

totic expansion of modified Bessel functions of the second kind at

small z (Ref. [7] Chaps. 9.6.9 and 9.6.54):

K0�z� ∼ − ln
�
z

2

�
− γ; Kα�z� ∼

Γ�α�
2

�
2

z

�
α

; α > 0

where γ is the Euler–Mascheroni constant; hence, for small jkj, we
have the following form of the Theodorsen function [Eq. (4)]:

C�k� ∼ 1∕�ik�
1∕�ik� − ln �ik∕2� − γ

∼ 1� ik

�
γ � ln

				 k2
				
�
− kArg�ik�;

F�k� � ReC�k� ∼ 1 − Imk

�
γ � ln

				 k2
				
�
− RekArg�ik�;

G�k� � ImC�k� ∼ Rek

�
γ � ln

				 k2
				
�
− ImkArg�ik�

where Arg�ik� is the principal argument. Then, from Eq. (6), we

obtain aerodynamic derivatives at a small reduced frequency by

neglecting terms of the order of k2 and smaller in the z and θ
derivatives, as well as by neglecting terms of the order of k and

smaller in the _z and _θ derivatives:

Lz � −2πkRek ln
				 k2
				; L_z � 2π

�
1 − Imk ln

				 k2
				
�
;

Lθ � 2π

�
1 − Imk

�
γ � ln

				 k2
				
�
− RekArg�ik� − kRek ln

				 k2
				
�
1

2
− a

��
;

L_θ � 2π

�
1

2
�
�
1 − Imk ln

				 k2
				
��

1

2
− a

�
� Rek

k

�
γ � ln

				 k2
				
�
−
Imk

k
Arg�ik�

�
;

Mz � −2πkRek ln
				 k2
				
�
1

2
� a

�
; M _z � 2π

�
1

2
� a

��
1 − Imk ln

				 k2
				
�
;

Mθ � 2π

��
1 − Imk

�
γ � ln

				 k2
				
�
− RekArg�ik�

��
1

2
� a

�
− kRek ln

				 k2
				
�
1

2
� a

��
1

2
− a

��
;

M _θ � 2π

�
−
1

2

�
1

2
− a

�
�
�
1 − Imk ln

				 k2
				
��

1

2
� a

��
1

2
− a

�
�
�
Rek

k

�
γ � ln

				 k2
				
�
−
Imk

k
Arg�ik�

��
1

2
� a

��

Substituting into Eq. (13); retaining terms of the order ofV 0, k, and
k ln k; and neglecting higher terms, after some algebra; we have

k

�
a
1 − 2a

1� 2a
� γ � ln

				 k2
				� iArg�ik� − ρV2

div

3

2

s4

4EI

�
� 2i

V 0

Vdiv

Taking separately the real and imaginary parts of this equation,

we obtain the system

Rek

�
a
1− 2a

1� 2a
� γ� ln

				 k2
				− ρV2

div

3

2

s4

4EI

�
− ImkArg�ik� � 0;

Imk

�
a
1− 2a

1� 2a
� γ� ln

				 k2
				− ρV2

div

3

2

s4

4EI

�
�RekArg�ik� � 2

V 0

Vdiv

(14)

Now, consider three options:
1) The first option is Imk � 0. With this option, we cannot satisfy

both equations of Eq. (14); i.e., no real solution exists.
2) The second option is Rek � 0. From the first equation of

Eq. (14), we immediately obtain Arg�ik� � 0, i.e., k � −iϰ,
ϰ ∈ R, and ϰ > 0. The leading term of the second equation of
Eq. (14) is

8

6

4

2

-10 -2-4-6 0

10

Im M

Re  M

Fig. 6 M_θ�k1� change when changing flow speed V from V � 10 m∕s
(open circle) to V � Vdiv � 54.9 m∕s (filled circle) and further to
V � Vdiv � 5 � 59.9 m∕s (square).
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−ϰ ln
				 ϰ2
				 � 2

V 0

Vdiv

This equation has a positive real solution ϰ�V 0� for V 0 > 0. This
solution corresponds to the divergence eigenmode, and it exists only
for V 0 ≥ 0. Indeed, for V 0 < 0, we have ϰ�V 0� < 0 andArg�ik� � π,
which does not satisfy the first equation of Eq. (14).
3) The third option is Rek ≠ 0 and Imk ≠ 0. It is sufficient to

consider onlyRek > 0 because the problem [Eq. (14)] is symmetrical
with respect to the imaginary axis k. Retaining only the leading
logarithmic term in the first terms of Eq. (14), they can be rewritten as

jkj2
Imk

ln

				 k2
				 � 2

V 0

Vdiv

;
jkj2
Rek

Arg�ik� � 2
V 0

Vdiv

Dividing the second equation by the first and introducing α � Argk,
we have

tan α

�
π

2
� α

��
ln

				 k2
				
�−1

� 1

Because ln jk∕2j < 0 for small jkj, we conclude that −π∕2 < α < 0.
However, the function tan α�π∕2� α� is bounded in this interval,
whereas ln jk∕2j → −∞ as k → 0. Hence, no solution of this kind
exists for small k.
We have proved that, at a flow speed slightly exceeding Vdiv, a

growing divergence mode exists for which the frequency tends to
zero as V → Vdiv � 0; but, no mode exists for V < Vdiv. In other
words, the divergencemode is not a continuation of a natural mode of
thewing but is an additional eigenmode that exists only forV ≥ Vdiv.
This phenomenon is due to the logarithmic singularity of the Theo-
dorsen function at k � 0, and it does not manifest itself if simplified
aerodynamics is used.
The fact that, for the same aeroelastic system, there are four

eigenmodes at V < Vdiv and five eigenmodes at V ≥ Vdiv looks
unusual, especially when considering that the number of eigenmodes
in “regular” systems should be equal to the number of initial con-
ditions that must be imposed in the initial-value problem. To resolve
this phenomenon, we now consider the solution of the initial-value
problem.

C. Divergence in the Framework of Initial-Value Problem

To formulate the initial-value problem, consider equations ofmotion
[Eq. (1)] yielding the eigenvalue problem [Eq. (8)]. The generalized
aerodynamic forces Qb and Qt are expressed through aerodynamic
damping and stiffness matrices only for harmonic motion, where
the Theodorsen aerodynamics is the linearized solution of the two-
dimensional aerodynamic problem. For the case of the general time-
domain motion,Qb andQt are functions of t that can be written in the
form of convolution integrals for which the kernels are expressed
through the Wagner function (Ref. [1] Chaps. 5–7, Ref. [2] Chap.
6.7). Their exact form is now not important; the only principal point is
that the Laplace transformation ofQb;t yields Theodorsen aerodynam-

ics because Wagner and Theodorsen functions are related through the
Laplace transformation (Ref. [1] Chaps. 5–7).
With the equations of motion, we specify the following initial

conditions:

qb�0� � q0b; _qb�0� � q1b; qt�0� � q0t ; _qt�0� � q1t ;

qb;t�t� � _qb;t�t� � 0; t < 0

where qnb and q
n
t are given constants. Note that, as aerodynamic loads

are calculated as convolution integrals of the wing displacement and
velocity, not only initial conditions at t � 0 but the total preceding
motion history for t < 0 must be specified. Physically, this feature
reflects the effect of the wake behind thewing: the wake is convected
downstream but “remembers” the wing motion in the past. That is
why the aerodynamic loading at a given t � t0 depends not only on
instant deflection and the velocity of the wing but also on the wing

motions at preceding moments of time t < t0. Here, to be specific,
without loss of generality, we assume that thewing is at rest for t < 0.
To solve the integrodifferential system of Eq. (1) with the given

initial conditions, we perform the Laplace transformation defined as

ξb;t�ω� � ξ�ω�fqb;tg �
Z �∞

0

qb;t�t�e−iωt dt

In contrast to the classical definition with the parameter s, we use
the parameter ω � −is to more evidently connect the solution of the
initial-value problem with the eigenvalue problem. Integrating by
parts, we find

ξ�ω�f _qg�−q0� iωξ�ω�fqg; ξ�ω�f �qg�−q1− iωq0−ω2ξ�ω�fqg

Then, the transformed system of equations [Eq. (1)] is as follows:

�−ω2M� iωDa�k� � �Ka�k� � K��
�
ξb
ξt

�
�
�
Pb

Pt

�
(15)

where Pb;t are functions of the initial conditions q
n
b;t and ω. We used

here the fact that the Laplace transformation of the time-domain
generalized aerodynamic forces yields the frequency-domain
Theodorsen aerodynamics.We then solve this linear algebraic system
by using Cramer’s rule to obtain the Laplace transformation of the
solution:

ξb � Cb�qnb;t;ω�
F �ω� ; ξt �

Ct�qnb;t;ω�
F �ω� (16)

Here, F �ω� is the determinant [Eq. (8)] of the system of equations
[Eq. (15)], and Cb;t are determinants of the same matrix where either

the first or second column is substituted by the right-hand side of the
system.
Now, let us apply the inverse Laplace transformation to Eq. (16) by

using Mellin’s inverse formula [8]:

qb;t�t� �
1

2π

Z �∞−iζ

−∞−iζ
ξb;t�ω�eiωt dω (17)

where the integration path Γ is a horizontal line at the complex ω
plane located below all singularities of ξb;t�ω� (Fig. 7). Again, the
classical Mellin’s formula deals with the parameter s of Laplace
transformation, and the integration path is a vertical line located to
the right of all singularities. Here, we use the parameter ω � −is so
that the complex ω plane is the s plane rotated by −π∕2.
Next, we move up the integration path Γ. The integral [Eq. (17)] is

not changed due to the Cauchy theorem. This theorem, however,
deals with integrals along finite-length paths, and so it should be used
with care when we move the infinite-length line. However, it is easy
to prove that the value of the integral still does not change (we do not
give the proof here to avoid technical details).
The motion of the integration path goes well while the integrand

does not have singularities. There are two types of singularities. The
first type is zeros ωn of the denominator [Eq. (16)], where the

0

Im

Re

-i

Fig. 7 Integration path Γ in Eq. (17).
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integrand has poles. When passing through poles, the integral along
the closed path surrounding the pole is separated (Fig. 8), which is
calculated according to the residue theorem:

qb;t�t� �
1

2π

Z
Γ1

ξb;t�ω�eiωt dω

� 1

2π

Z
Γ2

ξb;t�ω�eiωt dω� i
Cb;t�qnb;t;ωn�
dF �ωn�∕dω

eiωnt

Thus, each crossing of the eigenfrequency yields the separation of
the corresponding eigenmode term from the integral.
The second type of singularity is the branch point of the Theo-

dorsen function at ω � k � 0. To deal with this singularity, we must
properly define the branch cut. The two definitions of the Theodorsen
function [Eqs. (3) and (4)] coincide atRek ≥ 0 but differ in the branch
cut. The first definition [Eq. (3)] has a branch cut along a real negative
ray (Imk � 0 and Rek ≤ 0), whereas the second has a branch cut
along an imaginary positive ray (Rek � 0 and Imk ≥ 0). The first
definition lacks the fundamental symmetry of the aerodynamic forces
because k1 � kr � iki and k2 � −kr � iki must correspond to

exactly the same motion of the wing, but CH�k1� ≠ �CH�k2�. The
second definition [Eq. (4)] possesses this symmetry such that CK�k�
is the only correct analytical continuation of the Theodorsen function
from the right half-plane to the entire complex k plane. Having now
the branch cut along an imaginary positive ray, we deform the
integration path to embrace both sides of the branch cut (Fig. 9).
The rest of the integration path moves to Imk → �∞, where the
integrand is an exponentially damped function with an arbitrarily
large damping rate; and thevalue of this portion of the integral is zero.
The integral over the branch cut cannot be improved, and so the final
solution of the initial-value problem is

qb;t�t� �
1

2π

Z �i∞

0

�ξ�b;t�ω�eiωt dω�
Xp
n�1

i
Cb;t�qnb;t;ωn�
dF �ωn�∕dω

eiωnt (18)

where �ξ� is the jump of ξ on the branch cut, and p is the number of
eigenfrequencies.
We conclude that the general solution of the initial-value problem is

the linear combination of two terms: eigenmodes that form the discrete
spectrum of the problem, and the integral over pure imaginary damped
frequencies that form a continuous spectrum. A similar result was
obtained in Refs. [9,10] for a more general problem formulation. Note

that the proof of the continuous spectrum’s existence is similar to the
hydrodynamic stability theory problems, such as the solution to the
initial-value problem for plane Coutte flow [11] that does not have a
discrete spectrum at all but has a continuous spectrum that forms the
solution.
The physical nature of the continuous spectrumoriginates from the

wake behind the wing. As discussed earlier in this paper, the wake
“memory” of thewingmotion in the past results in aerodynamic loads
depending not only on the instant wing position and velocity but also
on all the preceding motion history. The continuous spectrum
expresses the wake memory effect.
Recall that, mathematically, the presence of the continuous spec-

trum is the result of the branch cut of the Theodorsen function. It is
now clear that the divergence eigenmode that exists only at V ≥ Vdiv

(Fig. 5) does not come from nowhere but separates from the continu-
ous spectrum at V � Vdiv. If simplified aerodynamics is used (such
as in Secs. III.A and III.B), then the corresponding aerodynamic
derivatives are holomorphic functions at the entire complex k plane
so that �ξ� � 0, and no continuous spectrum is present. This reflects
the fact that, physically, quasi-steady aerodynamics ignores thewake
behind the wing and, consequently, the wake influence on the aero-
dynamic loads. In this formulation, the divergence mode is the
continuation of the natural mode branch, according to the classical
divergence mechanism described in textbooks [1–3].

V. Comparison with Other Studies

A. “Practical” Methods of Flutter Analysis

The results of this study deal with an “exact” eigenvalue problem,
for which the numerical solution converges to the exact solution of
the eigenvalue problem. Let us now consider several methods used in
industrial flutter problems. First, the well-known k method imposes
structural damping to make the aeroelastic system neutrally stable,
and the instability is detected by positive imposed damping. In this
method, because only neutral oscillations are considered, the reduced
frequency k is always real so that no continuous spectrum can be
detected, and the divergence is obtained due to eigenmode interac-
tion, which is similar to quasi-steady aerodynamics. However, it is
well known that the k method gives the correct result only for a
stability boundary, where the oscillations are truly harmonic, but it
has no physical meaning before and beyond the onset of instability.
As an example, unphysical “folding” (appearance of multivalued
frequency and damping functions of velocity) of V − f and V − g

a)
1 

0 

Im

Re 0 

Im

Re

n n 2 

0 

Im

Re

n 

c)b)
Fig. 8 Passing of integration path Γ through a poleωn: a) original path (horizontal line), b) deformed path, and c) final path split into a horizontal line
above the pole and a closed path surrounding the pole.

0 

Im

Re 0 Re

n 

0 

n 

Re

n 

c)b)a)
Fig. 9 Deformation of integration path around branch cut (shown by bold line): a) original path, b) path deformed to envelope branch cut, and c) final
path consisting of two sides of branch cut.
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curves is a typical situation (Ref. [3] Chap. 10.9.1) that occurred, for

example, in Fig. 1 of Ref. [12] and in Fig. 4 of Ref. [13]. Also, the

mode going to divergence or flutter can be predicted incorrectly [12].

The absence of the continuous spectrum is also an unphysical feature

of this method.

The other two methods (p-k method [12] and g method [14,15])

assume that generalized aerodynamic forces can be calculated only for

pure sinusoidal motion: ω ∈ R. Although k and “original” p-k meth-

ods use aerodynamic forces only for neutral oscillations (thus being

correct only at stability boundary), themodifiedp-kmethod [16] andg
method take the modal damping into account in aerodynamic force

calculation, but through an approximate Taylor expansion. In the latter

two methods, in addition to structural modes, the so-called “aerody-

namic lag modes” appear [14,17,18]. The nature of these additional

modes consists of the following. When the initial-value problem is

solved, theWagner function or Theodorsen function (whatever is used

for calculating aerodynamic forces) is approximated by elementary

functions, such as exponents (so-called Jones approximation) [10,17].

When such an approximation is used, the branch cut disappears;

instead, several poles lying on a positive imaginary axis appear, as

discussed in Ref. [10]. In other words, the continuous spectrum breaks

up into a finite number of aerodynamic lag discrete modes. When

analyzing the problem with this approximation, it was noted [14,17]

that divergence occurs not when the structural eigenfrequency falls to

zero but when the aerodynamic lag mode loses stability; whereas all

structural modes stay damped. It is seen from our results and the study

in Ref. [10] that these aerodynamic lag modes are artificial and appear

only because of the approximation of aerodynamic transfer functions;

whereas with exact Theodorsen aerodynamics, there is “an infinite

number of aerodynamic lag modes” in terms of Refs. [10,17] or, in our

terms, they form a continuous spectrum.

However, in contrast to the previously known structure of eigenm-

odes, our results show that, when the divergence speed is exceeded,

the divergence mode is not a continuation of the aerodynamic lag

mode but a truly new eigenmode that separates from the continuous

spectrum. Note that the divergence mode existing apart from struc-

tural modes was also briefly mentioned in Ref. [9].

Onemore note shouldbemade regarding thegmethod [14,15]. This

method ofmodal damping inclusion into the aerodynamic forcematrix

is based on a Taylor expansion ofQ�ω� at small g � −Imω. Such an
expansion is valid at points where the aerodynamic force is analytic.

But, at ω � 0, it has a logarithmic-type branch point (Sec. IV.B)

because of the similar singularity of the Theodorsen function. Hence,

the Taylor expansion at ω � k � 0 is invalid, and so the V-g and V-f

plots obtained by this method are inaccurate in the vicinity of the

divergence speed, although the speed itself is predicted correctly.

B. Aeroelastic Analyses Through the Full Theodorsen Theory

The existence of the continuous spectrum in the aeroelastic system

modeled through the exact Theodorsen theory was previously shown

in Ref. [9]. Moreover, it was proved [10] that not only the incom-

pressible 2-D Theodorsen solution but any compressible subsonic

three-dimensional (3-D) solution for the aerodynamic loads has a

branch cut; consequently, the corresponding aeroelastic system has a

continuous spectrum along a positive imaginary ray. However, no

connection between the continuous spectrum and the divergence

mechanism was established in those studies.

Although there are a lot of papers using various approximations

and numerical techniques, an aeroelastic analysis through the exact

Theodorsen theory was conducted in a limited number of studies

[9,19–21], where the work [20] was one in which the transition to

divergencewas observed. The figures of (Ref. [20] Figs. 3, 4, and 11)

and the corresponding discussion clearly indicate that the loci of the

structural eigenfrequencies do not coalesce and do not yield the

divergence eigenmode. The latter, exactly as in the present study,

does not exist for V < Vdiv and appears only at V ≥ Vdiv, starting

from a zero frequency. However, it seems that the relation between

the existence of the divergence mode only at V ≥ Vdiv and the

continuous spectrum was not established in that study.

C. Numerical Studies

Let us now consider representation of the continuous spectrum
obtained through various numerical methods. First, as already noted
earlier in this paper, the Jones approximation of the Wagner function
yields the corresponding approximation of the Theodorsen function as
a rational function [9]. In addition to structural roots, the appearance of
two aerodynamic lag roots was observed [14,17,18] such that the
divergence was originated from those aerodynamic lag modes but
not the structural modes. It is important to note that, in those studies,
such additional modeswere not always present but had their respective
“activation velocities,” i.e., velocities at which they appeared. The
concept of the activationvelocityof amode doesnot have an equivalent
in the exact theory because the continuous spectrum consisting of all
monotonically damped frequencies exists at any positive flow speed.
Amore general approximation of the Theodorsen function is given

by the Padé approximation. It was shown [22] that this yields the
breakup of the continuous spectrum into a finite number of additional
aerodynamic modes. The author is not aware of any attempts of a
divergence analysis through the Padé approximation; however, it is
expected that, similar to Refs. [14,17,18], these modes will lose
stability instead of the structural modes.
A totally different approach was used in the work of Ref. [23]. The

time-domain vortex-lattice method was used, and the results of the
calculations were transformed to the frequency domain. First, it was
observed that, besides the structural frequencies, there exist hundreds
(equal to the number of vortex elements along the wake) of frequencies
that represent theunsteadywakebehind thewing.Althoughnot all those
frequencies correspond to the monotonically dampedmotion, the oscil-
lating part of the motion was diminished when the numerical resolution
was increased (e.g., see Fig. 5 of Ref. [23]). At that, the number of
additional frequencies increasedwhen the numerical resolution (i.e., the
number of vortex elements along the wing surface and the wake) was
increased. The principal conclusion of the numerical part of that study
was the divergence originating from aerodynamic but not structural
mode (see Fig. 24a of Ref. [23]). From the point of view of the exact
theory, it is clear that thevortex-latticemethod represents the continuous
spectrum as a large but finite number of discrete modes in exactly the
same manner that the time-domain motion of the wake calculated
through the vortex-lattice method represents its exact motion.

D. Experimental Study

Finally, the most impressive evidence of the divergence not origi-
nating from a structural mode was given by the experimental part of
Ref. [23]. In the course of thewind-tunnel experiment on a quasi-2-D
wing, the frequency and damping of each structural mode were
continuously and carefullymeasured and tracked in air-on conditions.
It was shown that, when increasing the flow speed, the frequencies
and damping did not approach zero when the flow speed approached
the divergence speed (see discussion on pp. 79–80 and 109–118 of
Ref. [23]).On the contrary, the divergence appeared suddenly,without
any precursor in the structural modes. This indicated the agreement
between the experiment and the numerical analysis [23], and it is in
agreement with the general theory of the present paper. A similar
experimental result of divergence not originating from the structural
mode interaction was obtained in Ref. [24].†

VI. Conclusions

Wehave shown that,whenmodeling unsteady aerodynamics using
the full Theodorsen theory, transition to divergence occurs not
because of themode coalescence and passing through zero frequency
but through the appearance of an additional divergence mode that
exists at postdivergence speeds but is absent at subcritical speeds.
This mode separates at V � Vdiv from the continuous spectrum
(Fig. 5) that corresponds to purely imaginary damped frequencies
(including zero frequency), and therefore cannot yield the instability
but produces the growing divergence mode. The existence of a

†According to a private communication with Professor Earl Dowell, Duke
University, Durham, NC, 29 August 2019.
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continuous spectrum is seen in thegeneral solution of the initial-value
problem and results from the branch cut of the Theodorsen function.
Physically, it reflects the influence of thewake behind thewing on the
aerodynamic loads of the aeroelastic system.
The appearance of a new, fifth eigenmode for V > Vdiv does not

yield any difficulties with the number of imposed initial conditions. In
polynomial eigenvalue problems, the number of roots must be equal to
the number of initial conditions because, otherwise, the initial-value
problem will be either overdefined or underdefined. In such problems,
the continuum spectrum is absent because the poles are the only
singularities of the integrand in Eq. (17). For the dynamic aeroelastic
system with unsteady aerodynamics, not only initial conditions at
t � 0 but the full history of thewing motion at t < 0must be specified
because the wake remembers all preceding motion that, consequently,
affects the aerodynamic loading. The resulting eigenvalue problem is
not polynomial, and solution (18) of the corresponding initial-value
problem has uniquely defined amplitudes of all eigenmodes (either
four at V < Vdiv or five at V ≥ Vdiv) and of the continuous spectrum.
When using simplified aerodynamics, such as quasi-steady theory,

aerodynamic derivatives are constants and do not have any branch cuts.
Physically, this corresponds to neglecting the wake effect. Then, the
continuous spectrum is absent, the eigenvalue problem is polynomial,
and thenumberofeigenmodes isconstant. In suchaproblemformulation,
the divergencemode occurs after the interaction of an eigenmodewith its
paired mode, according to the classical divergence mechanism [1–3].
As well as in classical transition to divergence, from a physical

point of view, the interplay of aerodynamic and structural stiffnesses
is important for the divergence onset because the separation of the
divergence mode from the continuous spectrum occurs when the
negative aerodynamic stiffness becomes sufficiently large to make
the total stiffness zero. However, in contrast to the classical mecha-
nism, all structural eigenmodes stay damped, whereas the growing
divergence mode separates from the continuous spectrum.
It is emphasized that the divergence velocity is not changed when

compared to the value obtained in the steady-flow approximation
because the transition occurs through ω � 0, where (and only where)
the steady theory is the exact solution. Hence, the new divergence
mechanism does not change the stability boundary but, clearly, the
analytical structure of the eigenmodes is drastically changed. This
yields the practical conclusions of this study, which consist of the
following. In the flight tests of flight vehicles, the crossing of the
instability boundary must be avoided, and its approach should be
detected in advance. Often, the tracking of structural damping and
frequencies of thewing at in-flight conditions is used, and the approach
of divergence is detected by the rapid decrease of the structural fre-
quency. The results of this study show that divergence can occur with-
out falling of the structural frequencies to zero, i.e., without any
precursor in the structural mode behavior. The experimental divergence
study of Ref. [23] fully confirmed this point. Hence, such dynamic
indicators of the divergence approach should be used with care.
The results of the present study, where a simplistic wing and flow

models were considered, are easily generalized to more sophisticated
aeroelasticmodels,where the aerodynamic functions are not analytic on
the entire complex ω plane but have branch cuts. Such models include
three-dimensional subsonic compressible flow [10]. Each branch cut
yields the continuous spectrum but, in general, it cannot be guaranteed
that it is relatedwith the transition to divergence. However, if the branch
cut of aerodynamic functions is similar to theTheodorsen function, such
as in compressible flows [10], then the transition to divergence cannot
occur irrespective of the continuous spectrum because it includes
ω � 0. In particular, in the problem of a membrane strip in air flow
[13], the transition to divergence (if analyzed through unsteady aero-
dynamics) occurs exactly in the same way as in the wing model
considered in this study: structural eigenmodes stay damped, but the
additional divergence mode separates from the continuous spectrum.
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