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The stability of the infinite series of thin elastic rectangular plates simply supported along all edges and exposed to a

supersonic flow is investigated. The nonzero flow yaw angle with supersonic leading edge is considered. To derive

expression for the unsteady aerodynamic pressure distribution over the oscillating plate, potential flow theory was

used, and an integrodifferential eigenvalue problem for finding complex eigenvalues was obtained. Flutter

boundaries for the first and second modes are computed. Changing of the single-mode and coupled-mode flutter

boundaries with the change of the yaw angle was shown.While they are smooth at zero angle, the boundaries become

irregular, and additional isolated regions of stability and instability appear when increasing the yaw angle. This

irregularity occurs due to the interaction of multiple spanwise modes, which takes place at nonzero yaw angle due to

their aerodynamic coupling.

Nomenclature

a0 = freestream speed of sound
D = dimensionless stiffness of the plate, Dw∕�a20ρmh3�
Dw = dimensional stiffness of the plate, �kg ⋅m2�∕s2
h = plate thickness, m
I = identity matrix
k, l = number of half-waves in the x and y directions
Lx = plate length
Ly = plate width

M = Mach number
Nx, Ny = number of basic modes

P = aerodynamic matrix
p = pressure perturbation
K = diagonal stiffness matrix, which represents the plate

properties
S = triangle that is an intersection of the plate and the

reversed Mach cone with the vertex at the point (ξ, η)
t = time
U0 = gas flow speed,Ma0, m∕s
w = plate deflection
x, y, z = spatial coordinates
Δ = Laplace operator
ε = value of the relative inaccuracy
η = spatial coordinate
θ = flow yaw angle
κ = wave number, πk∕Lx

λ = wave number, πl∕Ly

μ = gas density, ρ0∕ρm
ξ = spatial coordinate
ρm = plate material density, kg∕m3

ρ0 = gas density, kg∕m3

φ = flow potential
ω = complex eigenvalue
ωn = nth eigenvalue

I. Introduction

W HEN aircraft skin panels interact with the air flow at high
flight speeds, loss of stability and intense vibrations of skin

panels, known as the phenomenon of panel flutter, may occur.
Usually this phenomenon leads to the accumulation of fatigue dam-
age of the panels, followed by their destruction [1]. The first type of
the panel flutter, the coupled-mode flutter, occurs due to the inter-
action of two oscillation eigenmodes. The coupled-mode flutter has
been studied in detail using the piston theory [1–5], which is suitable
as an aerodynamic model at high supersonic speeds (M > 2). The
second type of panel flutter, the single-mode flutter, is caused by
negative aerodynamic damping. In this case, the coalescence of
eigenfrequencies and a significant change in the oscillation mode
shape do not take place. The single-mode flutter arises at a low
supersonic speed, where the piston theory is inapplicable, and there-
fore it is necessary to use more general aerodynamic models [6–14].
Most of panel flutter studies consider either cylindrical shells

[15,16] or rectangular plates and, rarely, skewed plates or other forms
with the flow perpendicular to the leading edge [17,18]. Also, there
are a number of recent studies of curved panels [19,20]. Only a few
works [21–23] investigate panel flutter at the nonzero yaw angle.
However, they used the piston theory or its modifications, which are
applicable only at highMach numbers. ForMach numbersM < 2, the
piston theory becomes invalid and incapable to predict single-mode
flutter that exists at low supersonic speeds. Therefore, in this range of
flow parameters it is necessary to use more general aerodynamic
models. In Ref. [24], the flutter boundaries for isolated rectangular
plate and infinite series of rectangular plates are studied using poten-
tial flow theory; zero yaw angle was considered. The present paper
develops the analysis method of Ref. [24] and presents calculated
results for the case of nonzero flow yaw angle.
The structure of the paper is as follows: Section I gives the problem

statement and briefly describes the calculation method. In Sec. II the
expression for the pressure perturbation is derived. Section III
presents a convergence study, and Sec. IV discusses the results of
this work. Finally, in Sec. V, conclusions are given.

II. Problem Formulation and Method of Solution

The stability of the infinite series of thin elastic rectangular plates, of
length Lx and width Ly, at nonzero flow yaw angle θ is investigated
(Fig. 1). Each plate is simply supported along all edges. One side of the
plate surface is exposed to a homogeneous supersonic flow of perfect
inviscid gas. Supersonic leading edge (M cos θ > 1) is considered.
Let us introduce two coordinate systems xyz and ξηz as shown in

Fig. 1. The gas flows along the ξ axis, whereas the η axis is directed
across the flow, and the z axis is normal to the plate surface.One side of
the plate is directed along the x axis, whereas the other along the y axis.
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Assuming homogeneous unperturbed flow and adiabatic motion

of the gas, the perturbed flow is necessarily potential. In the ξηz
coordinates, the dimensionless flow equations (1–3) and expression

for the pressure perturbation over the plate, Eq. (4), have the form:

∂2φ
∂t2

� 2M
∂2φ
∂ξ∂t

� �M2 − 1� ∂
2φ

∂ξ2
−
∂2φ
∂η2

−
∂2φ
∂z2

� 0 (1)

∂φ
∂z

����
z�0

� ∂w
∂t

�M
∂w
∂ξ

(2)

�
∂φ
∂ξ

;
∂φ
∂η

;
∂φ
∂z

�
→ 0 as z → �∞ along characteristics z

� ξ − ξ0���������������
M2 − 1

p (3)

p � −μ
�
∂
∂t

�M
∂
∂ξ

�
φ�ξ; η; 0; t�

φ � φ�ξ; η; z; t�; w � w�ξ; η; t�; p � p�ξ; η; t� (4)

where φ, t, w, p, M, and μ are dimensionless flow potential, time,

plate deflection, pressure perturbation, Mach number, and gas den-

sity, respectively.
For nondimensionalization, the plate thickness h, freestream speed

of sound a0, and plate material density ρm are used as independent

scales. Hence, dimensional quantities (denoted by a prime) are

expressed as φ 0 � φa0h, U0 � Ma0, ξ
0 � ξh, η 0 � ηh, z 0 � zh,

t 0 � th∕a0, w 0 � wh, p 0 � ρma
2
0p, ρ0 � μρm.

Small perturbations are considered in the form

φ�ξ; η; z; t� � Φ�ξ; η; z�e−iωt; w�ξ; η; t�
� W�ξ; η�e−iωt; p�ξ; η; t� � Π�ξ; η�e−iωt (5)

where ω is complex eigenvalue. Substitution into Eqs. (1–4) yields

−ω2Φ − 2iωM
∂Φ
∂ξ

� �M2 − 1� ∂
2Φ
∂ξ2

−
∂2Φ
∂η2

−
∂2Φ
∂z2

� 0 (6)

∂Φ
∂z

����
z�0

� −iωW �M
∂W
∂ξ

(7)

Π � −μ
�
−iω�M

∂
∂ξ

�
Φ�ξ; η; 0� (8)

The solution of the system of Eqs. (6–8) is as follows [25]:

Φ�ξ; η; 0� � −
1

π

ZZ
S

�
−iωW�ξ1; η1� �M

∂W�ξ1; η1�
∂ξ

�

× exp

�
iωM

β2
�ξ − ξ1�

�

×
cos

�
ω
β2

�����������������������������������������������
�ξ − ξ1�2 − β2�η − η1�2

p �
�����������������������������������������������
�ξ − ξ1�2 − β2�η − η1�2

p dξ1dη1 (9)

where β �
���������������
M2 − 1

p
, and S is a triangle that is an intersection of

the plate and the reversed Mach cone with the vertex at the point
(ξ, η) (Fig. 1).
Linear Kirchhoff–Love plate theory is used; in-plane tension of the

plate is neglected. In the x,y coordinates the plate equation and
boundary conditions have the form

DΔ2W�x; y� − ω2W�x; y� � Π�x; y� � 0 (10)

W�x; y� � ∂2W�x; y�
∂x2

� 0; x � 0; Lx (11)

W�x; y� � ∂2W�x; y�
∂y2

� 0; y � 0; Ly (12)

where Δ is the two-dimensional Laplace operator, D � Dw∕
�a20ρmh3�, and Dw are dimensionless and dimensional bending stiff-

ness of the plate, respectively. In Eq (10), pressure perturbationΠ�x; y�
is given in coordinate system xyz, which is associated with the plate.
Equations (8) and (9) and transformation of coordinates are used to

get the expression for the pressure perturbation in xyz coordinates.
After the substitution of this expression, the plate equation (10) with
simply supported boundary conditions (11) and (12) is an integro-
differential eigenvalue problem for finding eigenvalues ω. The cal-
culation method is described in detail in Ref. [24]; its essence is as
follows. Eigenvalue problem is solved numerically using the Bub-
nov–Galerkin procedure. The plate deflection is expressed as a
superposition of the plate mode shapes in vacuum:

W�x; y� �
XNx

k�1

XNy

l�1

Ck
lWk�x�Wl�y� �

XNx

k�1

XNy

l�1

Ck
l sin�ϰx� sin�λy�;

ϰ � πk

Lx

; λ � πl

Ly

(13)

This leads to the equation for complex eigenvalues:

det

�
K −

Lxω
2

2
I � P�ω�

�
� 0 (14)

where I is the identity matrix; K is the diagonal stiffness matrix,
which represents the plate properties; and P is aerodynamic matrix,
whose elements are calculated as

pmn � 2

Ly

Z
Lx

0

Z
Ly

0

Π�x; y; Tn;ω�Tm�x; y� dx dy;

Ti � sin

�
kπx

Lx

�
sin

�
lπy

Ly

�
; l �

�
i − 1

Nx

�
� 1; k � i − Nx�l − 1�

(15)

The frequency equation is solved by the iterative method [24].
Iterations for n th eigenfrequency ωn are continued until the relative
inaccuracy becomes sufficiently small:

����ωnp − ωn;p−1

ωnp

���� < ε (16)

whereωnp,ωn;p−1 are the values of the n th eigenfrequency at thepth
and (p − 1)th iteration steps.
The positive sign of Imωn is the flutter criterion.

Fig. 1 Flow over a series of plates. Triangle S is shown in gray.
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Since linear Kirchhoff–Love plate theory is used, only flutter
boundaries are studied, and postflutter behavior and limit cycles of
oscillations are not considered.
Compared to Ref. [24], the difference of the present study is in

the calculation of aerodynamic matrix due to the nonzero yaw
angle. The next section describes the details of the aerodynamic
matrix calculation.

III. Distribution of Pressure Disturbance over the Plate

Let us obtain an expression for the pressure perturbation acting on
the plate in the coordinate system xyz associated with the plate. The
transformation of coordinates has the form

ξ � x cos θ� y sin θ; η � −x sin θ� y cos θ

∂
∂ξ

� ∂
∂x

∂x
∂ξ

� ∂
∂y

∂y
∂ξ

� ∂
∂x

cos θ� ∂
∂y

sin θ (17)

IfW�x; y� is considered in the form

W�x; y� � W�x�eiλy (18)

then multipliers of the integrand in Eq. (9) are transformed as

−iωW�ξ1; η1� �M
∂W�ξ1; η1�

∂ξ
�

�
−i�ω − λMy�W�x1�

�Mx

∂W�x1�
∂x1

�
eiλy1 (19)

exp

�
iωM

β2
�ξ − ξ1�

�
� exp

�
iωMx

β2
�x − x1�

�
exp

�
iωMyy

β2

�

× exp

�
−
iωMyy1

β2

�
(20)

and expression under the square root is modified to the form:

�ξ − ξ1�2 − β2�η − η1�2 � �x − x1�2
β2

M2
x − 1

− �M2
x − 1�

�
y1 −

�
y −

�x − x1�MxMy

M2
x − 1

��
2

(21)

whereMx � M cos θ and My � M sin θ.
The integration limits in the xyz coordinate system are

y1b � �x − x1��cos θ − β sin θ�
β cos θ� sin θ

� y (22)

y1a � −
�x − x1��cos θ� β sin θ�

β cos θ − sin θ
� y (23)

Integrating Eq. (9) by parts and calculating integral over y in a
closed form, we obtain the expression for the potential in the xy
coordinate in the form

Φ�x; y; 0� � −
eiky���������������
M2

x − 1
p

Z
x

0

�
−i�ω − λMy�W�x1�

�Mx

∂W�x1�
∂x1

�
J0;1e

A1�x−x1�dx1 (24)

where J0;1 � J0�B1�x − x1��, J0 is zero-order Bessel function of the
first kind:

A1 � iMx�ω − λMy�∕�M2
x − 1�;

and

B1 �
������������������������������������������������������
λ2�M2

x − 1� � �ω − λMy�2
q

M2
x − 1

Therefore, the following pressure perturbation for W�x; y� �
W�x�eiλy is obtained:

Π1�x; y� � −μ
�
−iω�Mx

∂
∂x

�My

∂
∂y

�
Φ�x; y; 0� � ~Π1�x�eiλy

(25)

~Π1�x� �
μMx���������������
M2

x − 1
p

�
−i�ω − λMy�W�x� �Mx

∂W�x�
∂x

�

� μ

�
���������������
M2

x − 1
p

�3
Z

x

0

�
i
�
ω − λMy

	
J0;1

−MxJ1;1

������������������������������������������������������
λ2�M2

x − 1� � �ω − λMy�2
q �

×
�
−i�ω − λMy�W�x1� �Mx

∂W�x1�
∂x1

�
eA1�x−x1� (26)

where J1;1 � J1�B1�x − x1��, J1 is first-order Bessel function of the
first kind.
For the plate deflection W�x; y� given in the form

W�x; y� � W�x�e−iλy (27)

similarly, the expression for the potential Φ�x; y; 0� and pressure

disturbance

Π2�x; y� � ~Π2�x�e−iλy (28)

are obtained by simply changing the sign of λ:

~Π2�x� �
μMx���������������
M2

x − 1
p

�
−i�ω� λMy�W�x� �Mx

∂W�x�
∂x

�

� μ

�
���������������
M2

x − 1
p

�3
Z

x

0

�
i�ω� λMy�J0;2

−MxJ1;2

������������������������������������������������������
λ2�M2

x − 1� � �ω� λMy�2
q �

×
�
−i�ω� λMy�W�x1� �Mx

∂W�x1�
∂x1

�
eA2�x−x1�dx1 (29)

where J0;2 � J0�B2�x − x1��, J1;2 � J1�B2�x − x1��,

A2 � i
Mx�ω� λMy�

M2
x − 1

and

B2 �
������������������������������������������������������
λ2�M2

x − 1� � �ω� λMy�2
q

M2
x − 1

Accordingly, the expression for the pressure perturbation for

W�x; y� � W�x� sin�λy� � W�x� e
iλy − e−iλy

2i
(30)

is calculated as follows:

~Π�x; y� �
~Π1�x; y� − ~Π2�x; y�

2i
(31)

The final expression of Eq. (31) is used below for calculation of the

pressure matrix coefficients in Eq. (14).
The outer, Eq. (15), and inner, Eqs. (26) and (29), integrals are

calculated by the trapezoidal method. When calculating the outer

integral over x and y, the integration steps are
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Δx �
Lx

qNx

;Δy �
Ly

qNy

(32)

and to calculate the inner integral, a step is taken r times less than
Eq. (32), where q and r are two refinement parameters.

IV. Convergence Study

To determine the parameters of the numerical calculation, first, the
convergence was investigated. Plates with Ly � 200, 500, and 1000
were considered. Calculations were performed at yaw angles θ � 5,
15, and 30°.
First, the convergence in the number of basicmodesNx andNywas

considered. The results are shown in Figs. 2 and 3; here, relative

inaccuracy δ is defined as (similar definitions are used for other
parameters of the numerical method) follows:

δRe�Nx� �
����Reω�Nx� − Reω�Nx − 1�

Reω�Nx�

����;
δIm�Nx� �

���� Imω�Nx� − Imω�Nx − 1�
Imω�Nx�

���� (33)

δRe�Ny� �
����Reω�Ny� − Reω�Ny − 1�

Reω�Ny�

����;

δIm�Ny� �
���� Imω�Ny� − Imω�Ny − 1�

Imω�Ny�
���� (34)

The range of chordwise number Nx from 2 to 12 and the range of
spanwise numberNy from 1 to 6 are considered. It is clear thatNx � 6

and Ny � 4 give a satisfactorily converged results. Note that the

number of basic functions required for the convergence is larger than
in the casewith zero yaw angle [24], which is caused by the interaction
of higher spanwise modes that were uncoupled at zero yaw angle.
Next, the convergence of the solution was considered with respect

to the value of the relative inaccuracy ε, Eq. (16); number of integra-
tion pointsq of the outer integral, per the shortest half-wave, Eq. (15);
and the ratio of the external, Eq. (15), and internal, Eqs. (26) and (29),
integration steps, r.
Calculations have shown that the results are converged at ε ≤ 10−4

(Fig. 4). Therefore, ε � 10−4 is enough for accurate calculations.
Figures 5 and 6 show the convergence of real and imaginary parts

of the first two frequencies and their relative inaccuracies in q and r.
As a result, q � 6 and r � 3 are chosen, which yields satisfactory
accuracy. Note that the values of ε, q, and r sufficient to obtain
accurate results are the same as when calculating at zero yaw angle.
Based on the convergence study, the following parameters of the

numerical method are chosen: Nx � 6, Ny � 4, ε � 10−4, q � 6,
and r � 3. These values are used below in calculations of the panel
flutter boundaries.

V. Results

Panel flutter analysis of a series of rectangular plates with various
sizes was conducted. The first (k � 1, l � 1) and the second (k � 2,

2 4 6 8 10 12

Nx

0

50

100
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200

-2

0

2

4

6

3 6 9 12

10-6

10-4

10-2

1

a) b)

c) d)

Re  ×104 Im  ×104

2 4 6 8 10 12

10-6

10-4

10-2
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=15
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Im

Nx

Nx Nx

10-6

10-4

10-2

1

Fig. 2 Convergence in the chordwise number of basic modesNx for the

two first eigenmodes. Ny � 2, ε � 10−6, q � 10, r � 3. Real a) and

imaginary b) parts of the complex frequency and relative inaccuracies
c, d) versusNx.

1 2 3 4 5 6

0

50

100
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200

10-6

10-4
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1

Re  ×104 Im  ×104
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2 3 4 5 6
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-2

0
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6

a) b)

1 2 3 4 5 6
Ny

10-6

10-4

10-2

1

2 3 4 5 6

Ny

Re
Im

=15
=30

c) d)

Fig. 3 Convergence in the spanwise number of basic modes Ny for the

two first eigenmodes. Nx � 6, ε � 10−6, q � 10, r � 3. Real a) and
imaginary b) parts of the complex frequency and relative inaccuracies
c, d) versusNy.
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Fig. 4 Convergence in the relative inaccuracyε for the two first eigenm-
odes. Nx � 6, Ny � 4, q � 10, r � 3. Real a) and imaginary b) parts of

the complex frequency and corresponding relative inaccuracies c, d)
versus ε.
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l � 1) plate modes are considered. The calculations were performed

for the yaw angle θ � 0, 5, 10, 15, 20, 25, and 30°. Investigation has
been conducted atM from1.05 to 1.7; at each value of θ theminimum

Mach number was limited by the condition of supersonic leading

edge (M cos θ > 1); otherwise, the integration region K is not finite,

and the solution, Eq. (9), for the unsteady potential is not valid.

A. First-Mode Flutter

First, the case of zero yaw angle is considered. Figure 7 shows a

comparison with the results obtained by Shitov and Vedeneev [24].

In Fig. 7 (as well as in Figs. 8–12 and 14–23), Mach number is

plotted at the vertical axis, and dimensionless plate length at the

horizontal axis. The solid line denotes the boundaries calculated by

Shitov and Vedeneev [24], and the points denote the results of the

present work. The isolated instability region on the left-hand side

(A) corresponds to the single-mode flutter, whereas the unbounded
region (B) represents coupled-mode flutter. The comparison of
flutter boundaries shows that the results are in good agreement with
each other.
Consider panel flutter boundaries at nonzero yaw angle. Results at

θ � 5° for several Ly are shown in Fig. 8. The regions shaded with

gray are the instability regions in the corresponding mode.
It is seen that the results are qualitatively close to the case of

θ � 0° [24]. For Ly � 1000 and Lx > 61 there exists a segment of

M inwhich the firstmode flutter occurs.AtLx ≤ 61, the series of plates
is stable with respect to the first mode. When Ly decreases, there is

narrowing (in terms of Mach numbers) of the flutter region. For
example, at Lx � 280, the series of plates is unstable at 1.1 ≤ M <
1.32 for Ly � 600, and at 1.1 ≤ M < 1.24 for Ly � 460. Below a

certain value of Ly, the region of the instability is divided into a finite-

size single-mode flutter region (region A at lower Lx) and a coupled
flutter region B unbounded as Lx → ∞. For instance, the isolated
region of single-mode flutter exists at 60 < Lx < 198 and 1.11 < M <
1.34 for Ly � 450, and at 79 < Lx < 110 and 1.19 < M < 1.28 for

Ly � 340, whereas coupled mode flutter in the first mode occurs

at Lx > 238 for Ly � 450 and at Lx > 305 for Ly � 340. When
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Fig. 5 Convergence in the number of integration points q of the outer integral per the shortest half-wave for the two first eigenmodes.Nx � 6,Ny � 4,
ε � 10−4, r � 3. Real a) and imaginary b) parts of the complex frequency and relative inaccuracies c, d) versus q.
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Fig. 7 Comparison of the results of this work (points) and the results of
Shitov and Vedeneev [24] at zero yaw angle for the first mode and
Ly � 350.
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lowering Ly, the single-mode flutter region contracts to a point and

disappears, whereas the boundary of the coupled flutter is shifted to

largerLx. Figure 8 shows that forLy � 300, coupledmode flutter takes

place for Lx > 335.
With an increase of the yaw angle, the result becomes some-

what more complicated. Some irregularity appears in the insta-

bility boundaries. For large values of the width and for the length

greater than a certain value, there is also a segment of Mach

numbers, for which there is a panel flutter in the first mode.

Namely, for θ � 10 and 15° and Ly � 1000 the instability

appears at Lx > 60. Further, with decreasing Ly, on one hand,

narrowing of the unstable Mach number range takes place; on the

other hand, additional regions of instability appear (region C in

Fig. 9 and regions C–E in Fig. 10).
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Fig. 8 Flutter boundaries for the first mode at θ � 5°. The instability regions are shaded with gray.
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As well as for smaller yaw angles, when decreasing Ly, the single-
mode flutter region first becomes isolated, then reduces in size, con-
tracts to a point, and finally disappears. Figure 9 shows that for
θ � 10°, theLy � 570, isolated region of single-mode flutter appears

at 65 < Lx < 200 and 1.1 < M < 1.37 and for Ly � 400 at 71 < Lx <

125 and 1.18 < M < 1.32. For θ � 15°, the isolated region of single-
mode flutter occurs at 65 < Lx < 165 and 1.16 < M < 1.39 for Ly �
600 and at 71 < Lx < 115 and 1.22 < M < 1.34 for Ly � 450. Below

a certain value ofLy, the additional region caused by the interaction of

three or more modes also disappears. In addition, the boundary of the
coupled-mode flutter is shifted to larger Lx. Figure 9 shows that for
Ly � 300 coupled mode flutter takes place at Lx > 353 for θ � 10°

andatLx > 369 for θ � 15°. ThevalueofLy atwhich the single-mode

flutter region disappears increases with increasing yaw angle: this

critical value of the plate width is equal to 313, 324, 350, and 410 at

θ � 0, 5, 10, and 15°, respectively.
To identify the mechanism of flutter, the expansion coefficients

of the plate deflection in natural mode shapes, Eq. (13), with the

condition that the first natural mode shape amplitude C1
1 � 1, are

calculated to determine which of the modes dominates in flutter

oscillations (Fig. 11). At zero and small angles, the first mode

dominates at low Lx, and so this is a single-mode flutter (A in Fig. 8)

in the first mode. For largerLx, twomodes dominate (the first and the

second), and so this is a coupled type of flutter (B in Fig. 8) caused

by the interaction of these two modes through the aerodynamic

coupling. Note that at θ � 0°, spanwise modes are decoupled from

each other [14,26,27], i.e., jCi
jj � 0 for j > 1; the interaction occurs

only between chordwise modes C1
1 and C2

1 (Fig. 11).

With an increase inθ, the aerodynamic couplingyields the interaction

between spanwise modes as well (Fig. 12). The interaction of several

modes leads to the appearance of additional flutter regions. Namely,

Fig. 12 shows that in the region C at θ � 10° and Ly � 600 (Fig. 9)

modes T1
1, T

2
1, T

1
2, and T

2
2 have nonzero amplitude; i.e., all four modes

and their interaction are responsible for the corresponding instability

region. But still, there remain regions where either only onemode (A in

Figs. 9 and 10) or two modes (B in Figs. 9 and 10) dominate.

When several spanwise eigenmodes interact with each other in

region C, spanwise-traveling-wave-flutter takes place (Fig. 13). This

phenomenon was not observed at zero yaw angle, where the wave

could be traveling only in the streamwise direction.

For larger values of θ, the results become even more complex

(Fig. 14). A sufficiently strong irregularity of the flutter boundaries

exists already at large Ly. With decreasing dimensionless width,
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Fig. 11 Coefficients of the plate deflection expansion in natural mode
shapes jC2

1j (θ � 0°, Ly � 600).
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isolated regions of both coupled flutter and single-mode flutter appear.

In this irregularity, the interaction of multiple spanwise modes plays a

key role (Fig. 15). Note thatLy at which the single-mode flutter region

disappears continues to increase with increasing yaw angle: it is equal

to 484, 582, and 713 at θ � 20, 25, and 30°, respectively.
Thus, at a small yaw angle, the panel flutter boundaries differ little

from those at a zero yaw angle, but with an increase of θ, the
interactions of several modes, both chordwise and spanwise, lead

to the appearance of additional regions of instability and stability.

Due to the interaction of multiple modes, the boundaries loose the

smoothness and become irregular.

B. Second-Mode Flutter

For the second mode, first, a comparison was made with the

calculation results [24] at zero yaw angle (Fig. 16). As for the first

mode, there is a good agreement between the flutter boundaries.

At small angles θ, but at slightly larger range than for the first

mode, the results stay qualitatively close to the results at zero angle

(Figs. 17 and 18). For sufficiently wide plates, there is a region of

single-mode flutter in the second mode. It is seen that for Ly � 1000

and θ � 5° this region is located at 88 < Lx < 325 andM < 1.48, and
for Ly � 1000 and θ � 10° this region is located at 87 < Lx < 325

and M < 1.5. With decreasing Ly, the region of instability becomes

smaller. Then, at a certain value of Ly, it contracts to a point and

disappears. This value of Ly increases with increasing yaw angle:

A

Fig. 16 Comparison of the results of the present work (points) and the
those obtained by Shitov and Vedeneev [24] at zero yaw angle for the
second mode and Ly � 300.

Fig. 17 Flutter boundaries for the second mode at θ � 5°. The insta-
bility regions are shaded with gray.

Fig. 18 Flutter boundaries for the second mode at θ � 10°. The insta-
bility regions are shaded with gray.

Fig. 19 Flutter boundaries for the second mode at θ � 15°. The insta-
bility regions are shaded with gray.

Fig. 20 Flutter boundaries for the second mode at θ � 20°. The insta-
bility regions are shaded with gray.
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Ly � 183 at θ � 5°, Ly � 211 at θ � 10°, Ly � 256 at θ � 15°,

and Ly � 386 at θ � 25°.

With an increase in the yawangle, the appearance of new regions of

instability (D and E in Fig. 19, andD–G in Fig. 20) is observed. Their

appearance is caused by the interaction of several plate modes, both

streamwise and spanwise, which is seen from the expansion coef-

ficients of the plate flutter mode into natural mode shapes with the

condition that the second natural mode shape amplitude C2
1 � 1

(Fig. 21). In all cases the single-mode flutter region (A in Figs. 19

and 20) gradually decreases in size with the decreasing plate width.

With an increase in the angle, this region shifts to larger Mach

numbers. For example, at Ly � 1000 for θ � 5° single-mode flutter

appears at 1.1 ≤ M < 1.49, for θ � 10° at 1.1 ≤ M < 1.5, for θ �
15° at 1.13 < M < 1.53, for θ � 20° at 1.2 < M < 1.57, for θ � 25°
at 1.28 < M < 1.63, and for θ � 30° at 1.37 < M < 1.69.
With a further increase in the yaw angle, the number of regions of

multiple-mode flutter, caused by the interaction of several plate

modes, becomes larger (Figs. 22 and 23).

Thus, at small angles, but in a somewhat wider range than for the

first mode, the flutter boundary is similar to the case of a zero angle.

However, at larger angles, similar to the first mode, irregular isolated

regions of instability appear.
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Fig. 21 Coefficients of the plate deflection expansion in natural mode shapes (θ � 15°, Ly � 600): a) jC1
1j, b) jC3

1j, c) jC1
2j, d) jC2
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Fig. 22 Flutter boundaries for the second mode at θ � 25°. The insta-
bility regions are shaded with gray.

Fig. 23 Flutter boundaries for the second mode at θ � 30°. The insta-
bility regions are shaded with gray.
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VI. Conclusions

Using linearized potential flow theory and Bubnov–Galerkin pro-
cedure, the stability of a series of rectangular plates at a nonzero yaw
angle is investigated with respect to the first and second modes.
At low yaw angles, the flutter zones are qualitatively close to those

at zero angle and consist of single-mode and coupled-mode flutter
regions, which are connected at large Ly, and separated at lower Ly;
for sufficient low Ly the single-mode flutter region contracts to a

point and disappears. With an increase in the yaw angle, the value of
Ly, at which the single-mode flutter regions disappear, increases; i.e.,

the panel is stabilized in this sense.
An increase in the yaw angle also leads to the irregularity of the

coupled-mode flutter boundary and to the formation of additional
isolated regions of instability. Comparing with zero angle, these
new flutter regions appear due to the interaction of two or more
spanwise plate eigenmodes through the aerodynamic coupling. Due
to the interaction of several modes plate oscillation has a spanwise-
traveling wave form.
Note that multiple-mode flutter zones observed in this study are

obtained in a linear formulation and include at least two spanwise
modes. This is in contrast tomultiple-mode flutter oscillations at zero
yaw angle studied in previous works, where all interacting modes are
streamwise, and their interaction is a purely nonlinear effect.
In terms of practical aspects, present results show that flutter

analysis only at zero yaw angle is not conservative. First, yawed flow
yields the shift of the primary single-mode flutter region to larger
Mach numbers. Second, additional instability zones, with irregular,
nonsmooth boundaries, appear unexpectedly at the parameters that
are quite far from those where flutter existed at zero angle. Hence, in
aeronautical applications, the case of yawed flow should be consid-
ered with care, and nonzero yaw angle should be included into the
flutter model if the typical flight cycle has a significant portion of a
yawed flow.
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