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Instability of collapsible tubes is studied theoretically and experimentally in many papers
in the context of biological applications. Up to the present day, only Newtonian fluid flows
in elastic tubes have been studied. However, there are circumstances when blood, bile
and other biological fluids show essentially non-Newtonian behaviour. In this paper, we
re-investigate theoretically axisymmetric stability of elastic tubes conveying power-law
fluids. It is shown that for the power-law index n = 1, i.e. for the Newtonian case,
axisymmetric disturbances in infinite-length tubes are damped, which is in accordance
with experimental and theoretical observations, where the oscillations always involve
non-axisymmetric motion of the tube walls. However, for n < 0.611, the axisymmetric
disturbances can be growing, which predicts a new type of instability of elastic
tubes conveying pseudoplastic (shear-thinning) fluids. For n < 1/3, local instability of
axisymmetric perturbations becomes absolute in infinite tubes, while finite-length tubes
become globally unstable. The effects of the axial tension, elastic tube length and, if
present, lengths of inlet and outlet rigid tubes on the stability of finite-length tubes are
analysed.

Key words: flow-vessel interactions, rheology, absolute/convective instability

1. Introduction

It is known that changes in the geometry of biological vessels and ducts (blood vessels,
bile ducts, the gullet, ureters, etc.), such as aneurysm, stenosis and excessive tortuosity,
can result in changes in the flow regime of a biological fluid, yielding dysfunctions in
the human or animal organism. Oscillations of such vessels are responsible for flow and
pressure drop limitations that play an important role in biology (Shapiro 1977b; Pedley,
Brook & Seymour 1996; Koshev, Petrov & Volobuev 2007). That is why flutter of elastic
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tubes has been of great interest over several decades (Pedley 2003; Grotberg & Jensen
2004; Heil & Hazel 2011).

Bending instability of elastic tubes conveying fluid has been studied extensively by many
authors, of which we mention only the books by Païdoussis (1998) and Gorshkov et al.
(2000), and a recent work on stability of arbitrary three-dimensional tubes by Gay-Balmaz,
Georgievskii & Putkaradze (2018). Such instability may occur in various industrial coolers
consisting of tube arrays, including coolers of nuclear reactors. However, there is no
evidence of bending instability in biological applications; it seems that bending modes
are well damped by tissues surrounding vessels. That is why instability modes that are not
accompanied by curving of the tube axis are of primary interest in biomechanics.

The main experimental facility for studying such instabilities is known as the ‘Starling
resistor’. Following Katz, Chen & Moreno (1969), extensive experimental data were
published by Brower & Scholten (1975), Bertram (1986), Bertram, Raymond & Pedley
(1990), Bertram, Diaz de Tuesta & Nugent (2001), and Bertram et al. (2004). The main
feature of observed instabilities is the partial or full collapse of the tube during part of the
oscillation cycle, which produces complex fluid–structure interaction and yields various
instability types (Bertram et al. 1990), including quasi-chaotic oscillations (Bertram et al.
2004). Bertram & Tscherry (2006) conducted well-documented low-Reynolds-number
experiments intended for comparisons with prospective numerical modelling. A difference
between laminar and turbulent flow regimes was highlighted in a recent experimental study
by Podoprosvetova et al. (2021). Among all experimental studies, there are no reports
of instabilities not involving tube collapse so that transmural pressure (internal minus
external) at the unstable state is negative at least along part of the tube.

The simplest theoretical models used for analysis of collapsible tubes are
one-dimensional (1-D) models first used by Katz et al. (1969) and Shapiro (1977a).
In order to include the effect of the tube collapse, each tube is characterised by a
relation between its cross-sectional area and transmural pressure, known as ‘tube law’.
At the beginning of the oscillation cycle, for high flow rate and negative transmural
pressure, the tube is partially collapsed, which increases the tube resistance. This yields
deceleration of the flow and increase of transmural pressure. In turn, this yields blowing
up of the tube, increase of the flow rate and decrease of the transmural pressure,
closing the oscillation cycle. During each tube collapse, the deformation of the tube
is essentially non-axisymmetric, and the flow inside of the tube is rather complex. In
order to better fit the real tube behaviour, advanced 1-D models include pressure loss
models suitable for partially separated flow downstream from the constriction, which is
shown to play an important role (Jensen & Pedley 1989; Jensen 1990). Pedley & Luo
(1998) discuss the shortcomings of existing 1-D models and their improvements based
on two-dimensional (2-D) calculations. Significant development of 1-D models, which
shows qualitative agreement with three-dimensional (3-D) numerical simulation for tubes
of elliptic cross-section, is provided by Whittaker et al. (2010). Higher-dimensional studies
reviewed by Heil & Jensen (2003), Grotberg & Jensen (2004) and Heil & Hazel (2011) are
devoted to analytical and numerical investigations of fluid and tube motions based on 2-D
models (Luo & Pedley 2000; Kudenatti, Bujurke & Pedley 2012; Liu, Luo & Cai 2012;
Amaouche & Di Labbio 2016) and numerical studies based on 3-D models (Heil & Pedley
1996; Hazel & Heil 2003; Marzo, Luo & Bertram 2005; Heil & Boyle 2010).

In connection with collapsible tubes, it is worth mentioning a series of instability studies
of pipe flow in a rigid tube with compliant viscoelastic coating inside (Ganiev, Malykh
& Ukrainskii 1986; Kumaran 1995, 1996, 1998; Shankar & Kumaran 1999). Through
asymptotic analysis as k Re → ∞ (where k is a wavenumber), and numerical calculations

941 A61-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

33
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.332


Instability of elastic tubes conveying power-law fluids
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Figure 1. Axisymmetric perturbation of an elastic tube, with wavelength λ in the case R � λ� L.

without this limit, it was shown that hydrodynamic modes, which are all stable in a rigid
tube, can become growing in a flexible tube. For very soft tubes, the transitional Reynolds
number is less than 2000, at which a ‘usual’ bypass transition to turbulence is observed
in rigid tubes. It is interesting that experimental studies of transition in soft pipes (Verma
& Kumaran 2012) provide much lower transitional Reynolds numbers than the theory
predicts, indicating clearly that the surface compliance plays a key role in transition in
flexible tubes. However, in those studies, only such modes of the hydroelastic system were
considered that exist in a rigid pipe flow, i.e. ‘flow-originated’ modes. The present study
considers a different, ‘structure-originated’ family of modes, which still exists in an elastic
tube if the flow speed is zero, or if the tube is empty. While the first class of modes is
responsible for the transition to turbulence, the second class is responsible for flutter of the
tube conveying fluid.

At the present day, all studies of collapsible tubes consider Newtonian fluid flows. It
is known, however, that blood in small vessels (Moore et al. 1985; Ku 1997; Gijsen, van
de Vosse & Janssen 1999; Anand & Rajagopal 2004; Galdi et al. 2008) and pathological
bile (Coene et al. 1994; Kuchumov et al. 2014, 2021) can show essentially non-Newtonian
behaviour. For example, Smith, Pullan & Hunter (2002) reported a blood velocity profile
during the cardiac cycle that is equivalent to the index n = 1/8 of the rheology power law.
Many studies consider non-Newtonian effects of the flows in rigid channels, e.g. Cherry
& Eaton (2013). A series of recent works is devoted to the analysis of static fluid–structure
interaction between the non-Newtonian fluid flow and a flexible vessel (Yushutin 2012;
Poroshina & Vedeneev 2018; Anand, David & Christov 2019; Nahar, Dubey & Windhab
2019; Vedeneev 2020). However, we are not aware of studies dealing with dynamic
instability in such a system, except for the work of Shankar & Kumaran (1999) mentioned
above, who analysed the stability of ‘flow-originated’ modes of non-parabolic flow profiles
inside a viscoelastic medium. Several recent studies analyse the response of a vessel wall
to a pulsatile flow and corresponding non-Newtonian effects (Hundertmark-Zausková &
Lukásová-Medvid’ová 2010; Kuchumov et al. 2021), but the instability was not observed
in those works.

This paper is devoted to re-investigation of flutter of an elastic tube conveying fluid
by considering non-Newtonian fluid rheology. The power-law fluid is analysed, which
provides the possibility of analytical investigation based on a simple 1-D model. We
restrict ourselves to axisymmetric perturbations of the tube (figure 1), i.e. transmural
pressures considered are positive. It is found that while such perturbations in the case of
Newtonian and dilatant (shear-thickening) fluid are damped, they can grow in the case
of small power-law index n. This means that for pseudoplastic (shear-thinning) fluids,
instability can be observed for positive transmural pressures, i.e. the tube collapse does not
occur during the oscillation cycle and therefore is not involved in the perturbation growth
mechanism. The nature of axisymmetric instability (absolute/convective) is also studied,
and the relation between dimensionless tube stiffness and power-law index n resulting in
absolute instability is found. Finally, the instability of finite-length tubes is analysed.
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Figure 2. (a) Power law (2.3) for pure shear. (b) Velocity profile for Poiseuille flow.

The structure of the paper is as follows. In § 2, we describe the 3-D formulation of
the problem and reduce it to a 1-D problem under assumptions typical for collapsible
tubes. Next, in § 3, the local stability of a given segment of a tube is studied. Section 4
is devoted to the analysis of local absolute/convective instability. In § 5, we analyse the
stability of finite-length tubes: first, we consider asymptotic analysis of long but finite
tubes, and second, we analyse numerically the least stable first-mode instability without
restrictions on the tube length. Finally, in § 6, we summarise the results and conclude the
paper.

2. Formulation of the problem

2.1. Axisymmetric flow of a non-Newtonian fluid in a tube
Consider a cylindrical tube and an incompressible fluid flowing inside it.

The system of equations for the fluid motion is

div(v) = 0,

dvi

dt
= − 1

ρ
grad( p) + 1

ρ
∇jτ

ij, i = 1, . . . , 3,

⎫⎪⎬
⎪⎭ (2.1)

where τ ij is the viscous stress tensor. The fluid rheology obeys the power law

τ ij = 2μ(
√

2 I2(e))n−1eij, I2 =
√

eijeij, (2.2a,b)

where eij is the strain rate tensor. This law is a generalisation of the pure shear relationship

τ 12 = μ

(
dv1

dx2

)n

. (2.3)

For Newtonian fluid, n = 1. The case 0 < n < 1 corresponds to pseudoplastic
(shear-thinning) media, whose viscosity is higher for smaller shear rate, while the case
n > 1 corresponds to dilatant (shear-thickening) media, whose viscosity increases with
the increase of shear rate (figure 2a).
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Introduce a cylindrical coordinate system with the z-axis directed along the tube, and
consider axisymmetric flows. Then the system of equations is rewritten as

∂vr

∂r
+ ∂vz

∂z
+ vr

r
= 0, (2.4)

dvr

dt
= − 1

ρ

∂p
∂r

+ 2(n−1)/2

ρ

[
∂

∂r

(
2μIn−1

2
∂vr

∂r

)
− 2rμIn−1

2
1
r3 vr

+ 2
r

μIn−1
2

∂vr

∂r
+ ∂

∂z

(
μIn−1

2

(
∂vz

∂r
+ ∂vr

∂z

))]
, (2.5)

dvz

dt
= − 1

ρ

∂p
∂z

+ 2(n−1)/2

ρ

[
∂

∂r

(
μIn−1

2

(
∂vz

∂r
+ ∂vr

∂z

))

+ μ

r
In−1
2

(
∂vz

∂r
+ ∂vr

∂z

)
+ ∂

∂z

(
2μIn−1

2
∂vz

∂z

)]
. (2.6)

For a steady flow in a rigid tube of radius R0, the solution of the system (2.4), (2.5),
(2.6) is a Poiseuille flow

vr = 0, vz(r) =
(

k
μ

)1/n

2−1/n n
n + 1

(
R(n+1)/n

0 − r(n+1)/n
)

,
∂p
∂z

= −k = const.

(2.7a–c)

Velocity profiles for various n are shown in figure 2(b). In the case of Newtonian fluid
(n = 1), we obtain a standard parabolic flow.

2.2. Reduction to a 1-D system of equations
We assume that the tube motion is such that each cross-section S(z, t) stays circular, and
the tube points move only in a radial direction (figure 1). Then the tube geometry is defined
by its radius R(z, t) in the point z at time t. The flow and the tube interact with each other
through the no-slip condition and the equality of normal stress at the wall; axial motion
of the tube wall is neglected. In order to reduce the 2-D system (2.4), (2.5), (2.6) to a 1-D
system of equations in terms of cross-sectional radius R and flow rate Q, we will integrate
each equation across the cross-section, taking fluid–tube coupling into account.

2.2.1. Assumptions
We will consider perturbations satisfying three conditions.

(a) Wavelength λ is large compared to the tube radius R: R/λ ∼ ε � 1.
(b) Wave frequency is sufficiently small so that the flow inside the tube can be

considered as quasi-steady.
(c) The Reynolds number is not too large, ε Re � 1.

Under these conditions, the relative velocity S(ξ, z, t) = vz(r, z, t)/vav(z, t) (where
ξ = r/R, and vav(z, t) = Q/(πR2) is the average velocity) does not depend on the
cross-sectional radius R(z, t) and local flow rate Q(z, t). A rigorous derivation of this
quasi-steady velocity distribution is given in Appendix A; here, we just note that this
assumption is known as the Kármán–Pohlhausen approximation, and it is common in
theory of liquid films and in cardiovascular biomechanics.
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Calculating average velocity for the profile (2.7a–c), we find

S(ξ, z, t) = 1 + 3n
1 + n

(
1 − ξ (n+1)/n

)
. (2.8)

Hence

vz(r, z, t) = Q(z, t)
π R2(z, t)

1 + 3n
1 + n

(
1 −

( r
R

)(n+1)/n
)

. (2.9)

2.2.2. Averaging of the system of equations in a cross-section
The first equation of the 1-D problem is obtained by simply integrating the continuity
equation (2.4) over a cross-section:

∂Q
∂z

+ π
∂R2(z, t)

∂t
= 0. (2.10)

In order to derive the second 1-D equation, we integrate (2.6),∫
S(z,t)

(
∂vz

∂t
+ vr ∂vz

∂r
+ vz ∂vz

∂z

)
dS

= −
∫

S(z,t)

1
ρ

∂p
∂z

dS + 2(n−1)/2

ρ

∫
S(z,t)

[
∂

∂r

(
μIn−1

2

(
∂vz

∂r
+ ∂vr

∂z

))

+ μ

r
In−1
2

(
∂vz

∂r
+ ∂vr

∂z

)
+ ∂

∂z

(
2μIn−1

2
∂vz

∂z

)]
dS, (2.11)

and transform it as follows.
First, using the continuity equation ∂vz/∂z = −(1/r) ∂(rvr)/∂r, the no-slip condition

vz(R, z, t) = 0 at the tube wall, and integrating by parts yields∫
S(z,t)

vr ∂vz

∂r
dS = 2π

∫ R

0
rvr ∂vz

∂r
dr = −2π

∫ R

0
vz
(

−r
∂vz

∂z

)
dr =

∫
S(z,t)

vz ∂vz

∂z
dS.

(2.12)
Using the velocity profile (2.9), after some algebra we obtain

∫
S(z,t)

vz ∂vz

∂z
dS = 1

2
∂

∂z

(
(3n + 1) Q(z, t)2

(2n + 1)π R(z, t)2

)
. (2.13)

Second, the pressure term is rewritten as

∫
S(z,t)

1
ρ

∂p
∂z

dS = π R(z, t)2

ρ

∂P(z, t)
∂z

, (2.14)

where

P(z, t) = 1
π R2(z, t)

∫
S(z,t)

p(r, z, t) dS (2.15)

is the average pressure at the cross-section.
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Finally, consider viscous terms on the right-hand side. Two first terms are transformed
as follows:

2(n+1)/2π

ρ

∫ R

0
r
(

∂

∂r

(
μIn−1

2

(
∂vz

∂r
+ ∂vr

∂z

))
+ 1

r
μIn−1

2

(
∂vz

∂r
+ ∂vr

∂z

))
dr

= 2(n+1)/2π

ρ

∫ R

0

∂

∂r

(
rμIn−1

2

(
∂vz

∂r
+ ∂vr

∂z

))
dr

= 2(n+1)/2π R(z, t)
ρ

μIn−1
2

(
∂vz

∂r
+ ∂vr

∂z

)∣∣∣∣
r=R(z,t)

. (2.16)

For the following transformations, we take into account long-wave approximation,
i.e. consider the characteristic radius-to-length ratio R/λ as a small number ε. From
the continuity equation, it follows that the radial and axial velocities are rated as
vr/vz ∼ R/λ ∼ ε. Then

μIn−1
2

(
∂vz

∂r
+ ∂vr

∂z

)
= −μ2(1−n)/2

∣∣∣∣∂vz

∂r

∣∣∣∣
n

+ O(ε2), (2.17)

because the second invariant of the strain velocity tensor is expanded as

I2
2 =

(
∂vz

∂z

)2

+
(

∂vr

∂r

)2

+
(

vr

r

)2

+ 1
2

(
∂vz

∂r
+ ∂vr

∂z

)2

= 1
2

(
∂vz

∂r

)2

+ O(ε2). (2.18)

Using the velocity law (2.9), we find

2(n+1)/2π R(z, t)
ρ

μIn−1
2

(
∂vz

∂r
+ ∂vr

∂z

)∣∣∣∣
r=R(z,t)

= −μ

ρ

2(3n + 1)n Q(z, t)n

nnπn−1 R(z, t)3n−1 . (2.19)

The last viscous term,

2(n−1)/2

ρ

∫
S

∂

∂z

(
2μIn−1

2
∂vz

∂z

)
dS, (2.20)

has the order of ε2 and can be neglected.
Summarising, (2.6) integrated over the cross-section takes the form

∂Q(z, t)
∂t

+ ∂

∂z

(
(3n + 1) Q(z, t)2

(2n + 1)π R(z, t)2

)
+ μ

ρ

2(3n + 1)n Q(z, t)n

nnπn−1 R(z, t)3n−1 + π R(z, t)2

ρ

∂P(z, t)
∂z

= 0.

(2.21)

2.2.3. Tube model
In order to obtain the last equation, we have to connect the fluid pressure and the motion
of the tube wall. Considering geometrically and physically linear shell theory, taking into
account tube inertia and axial tension of the tube wall, the tube equation is written as
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(Koiter 1970; Nobile & Vergara 2008)

m
∂2R
∂t2

= −β(R − R0) + N
∂2R
∂z2 + P, (2.22)

where

β = Eh

(1 − ν2)R2
0

(2.23)

is the radial stiffness of the tube, m = ρth is the wall surface density, N = σh is the axial
tube tension, R0 is the undeformed tube radius, E and ν are Young’s modulus and the
Poisson coefficient, h is the tube wall thickness, ρt is the tube material density, and σ is
the tube tension stress.

2.2.4. 1-D system of equations
Finally, the closed system of (2.10), (2.21), (2.22) for three unknowns Q, R, P and two
independent variables z, t takes the form

∂Q
∂z

+ ∂(πR2)

∂t
= 0, (2.24)

∂Q
∂t

+ ∂

∂z

(
(3n + 1)Q2

(2n + 1)πR2

)
+ μ

ρ

2(3n + 1)nQn

nnπn−1R3n−1 + πR2

ρ

∂P
∂z

= 0, (2.25)

β(R − R0) − N
∂2R
∂z2 + m

∂2R
∂t2

= P. (2.26)

2.2.5. Comparison with other 1-D models
Equation (2.24) has a standard form of 1-D continuity equations (Grotberg & Jensen
2004). The tube equation (2.26) also has a standard form; however, in contrast to other
collapsible tube studies, we do not take the tube law at negative transmural pressures
into account. The tube law is necessary to obtain oscillations associated with partial tube
collapse; however, the goal of this study is the investigation of oscillations at positive
transmural pressures, not accompanied by tube collapse. The tube mass coefficient in
general can include added mass to take the fluid inertia into account.

The momentum equation (2.25) looks more sophisticated and needs additional analysis.
As a rule (Grotberg & Jensen 2004), a 1-D momentum equation is written in the standard
form

ρ

(
∂v

∂t
+ v

∂v

∂z

)
= −dp

dz
− F, (2.27)

where v(z, t) and p(z, t) are average axial velocity and flow pressure, and F is the viscous
loss term. Let us rewrite (2.25) in a similar form. Multiplying (2.25) by ρ/(πR2), we have

ρ

(
1

πR2
∂Q
∂t

+ 1
πR2

∂

∂z

(
(3n + 1)Q2

(2n + 1)πR2

))
= −∂P

∂z
− μ

2(3n + 1)nQn

nnπnR3n+1 . (2.28)

The right-hand side of (2.27) is written under the assumption of uniform velocity
distribution, i.e. Poiseuille velocity distribution is neglected. This is equivalent to putting
n = 0, because in this case we obtain a uniform Poiseuille velocity profile (figure 2b).
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For n = 0, the right-hand side of (2.28), by introducing average velocity v =
Q(z, t)/(πR2) and using the continuity equation, is transformed to

ρ

(
∂v

∂t
+ v

∂v

∂z

)
, (2.29)

which coincides with (2.27). Obviously, for n �= 0, the right-hand side of (2.28) reflects the
influence of the Poiseuille velocity distribution on the integrated convective derivative. In
a form similar to (2.28), the right-hand side of the momentum equation at n �= 0 was used
by many authors, e.g. Smith et al. (2002), Formaggia, Lamponi & Quarteroni (2003) and
Alastruey et al. (2012).

Finally, consider the viscous pressure loss term

μ
2(3n + 1)nQn

nnπnR3n+1 . (2.30)

For n = 1, it becomes

μ
8Q
πR4 , (2.31)

which is a pressure loss in a standard Newtonian Poiseuille flow. The term F was taken in
this form, for example, by Katz et al. (1969). It is now clear that for n �= 1, the term (2.30)
represents generalisation of the viscous loss term to a power-law fluid.

A similar 1-D model was used by Smith et al. (2002), Formaggia et al. (2003), Alastruey
et al. (2012) and many others for creating a model of a blood vessel network; it is
worth mentioning the work of Sazonov & Nithiarasu (2019), who included a non-constant
friction coefficient into the model. Such models are used commonly in cardiovascular
biomechanics. However, while assuming the velocity profile (2.7a–c) and obtaining the
same convective term as the second term in (2.25), the viscous pressure loss was taken
as (2.31), i.e. non-Newtonian rheology in those studies was neglected. As will be shown
below, a non-Newtonian viscous loss term (2.30) is a necessary element for the instability
studied in this paper.

2.3. Dimensionless problem
Let us choose the fluid density ρ, tube radius R0, and flow rate Q0 at the tube inlet as
independent scales, and non-dimensionalise other quantities as follows:

R = R0R̃, Q = Q0Q̃,

P = ρ0Q2
0

R4
0

P̃, β = ρ0Q2
0

R5
0

β̃, m = R0ρ0m̃, N = ρ0Q2
0

R3
0

Ñ,

z = R0z̃, t = R3
0

Q0
t̃,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.32)

where dimensionless variables are denoted by tildes.
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A. Podoprosvetova and V. Vedeneev

Fluid viscosity is non-dimensionalised through the Reynolds number, which for
power-law fluids in tubes is introduced as (Metzner & Reed 1955)

Re = ρ(2R0)
nv2−n

av

μ

(
3n + 1

4n

)n

8n−1
= ρRn

0v
2−n
av

μ

8nn

(3n + 1)n . (2.33)

Expressing average velocity as vav = Q0/(πR2
0), we obtain

μ = ρQ2−n
0

R4−3n
0

πn−2

Re
8nn

(3n + 1)n . (2.34)

Introducing non-dimensional variables into the system (2.24)–(2.26) and omitting tildes,
we finally obtain the dimensionless system of 1-D equations

∂Q
∂z

+ ∂(πR2)

∂t
= 0, (2.35)

∂Q
∂t

+ ∂

∂z

(
(3n + 1)Q2

(2n + 1)πR2

)
+ 16Qn

π Re R3n−1 + πR2 ∂P
∂z

= 0, (2.36)

β(R − 1) − N
∂2R
∂z2 + m

∂2R
∂t2

= P. (2.37)

2.4. Steady flow in elastic tube
Consider a steady state of a tube conveying fluid. Let the flow rate Q = Qs(z) and radius
R = Rs(z) not depend on t. Then (2.35) and (2.36) with substituted (2.37) take the form

∂Qs

∂z
= 0 ⇒ Qs ≡ 1,

NR3n+1
s

β

∂3Rs

∂z3 +
(

2(3n + 1)Rs
3n−4

(2n + 1)π2β
− R3n+1

s

)
∂Rs

∂z
− 16

π2β Re
= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.38)

The latter equation needs three boundary conditions. Consider a fixed radius of the tube at
its ends and a known transmural pressure Pin at the leading end of the tube. Then

Rs(0) = Rs(L) = 1,
∂2Rs(0)

∂z2 = −Pin/N. (2.39a,b)

In the case N = 0, the steady tube equation (2.38), with just one boundary condition
Rs(0) = 1, is solved in a closed form, as shown by Smith et al. (2002) for Newtonian
and by Yushutin (2012) for non-Newtonian fluid. There are two principal features of these
solutions. First, they cannot be continued to arbitrarily large z, i.e. a maximum possible
tube length exists. Second, the tube may be either narrowing or widening downstream.
The criterion that the tube narrows is

β > βdiv = 2(3n + 1)

(2n + 1)π2 , (2.40)

i.e. the tube must be sufficiently stiff.
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Instability of elastic tubes conveying power-law fluids

(a) (b)

z
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1.1

0.9

0.8

1.0

L

Pin = 0

Pin = 0.08

z
200 40 60

1.1

0.9

1.0

0.8 Pin = 0 Pin = 0.08

80

Figure 3. (a) Effect of the inlet transmural pressure on the tube shape for a fixed tube length L = 35: Rs(z) for
parameters (2.41a–d) for Pin = 0, 1, 2, 4, 6, 8 × 10−2. (b) Effect of the inlet transmural pressure on maximum
tube length: Rs(z) for parameters (2.41a–d) for Pin = 0, 1, 2, 4, 6, 8 × 10−2.

Limited length of the steady-state solution for the case of zero tension is the consequence
of singularity of (2.38) at N = 0. However, for non-zero tension, (2.38) becomes regular.
Although the tube lengths for a given Pin stay limited even in this case (Poroshina &
Vedeneev 2018), the steady tube may be essentially longer if the inlet transmural pressure
is positive, Pin > 0. Figure 3(a) shows examples of tube shapes obtained for various Pin
for a fixed L = 35 for parameters

n = 0.2, Re = 1000, β = 0.7, N = 0.2. (2.41a–d)

It is seen that the increase of the transmural pressure yields the inflation of the tube. The
inflation admits a larger steady-state tube length, as shown in figure 3(b), where tube
geometries are plotted for the maximum tube lengths for each Pin. The combination of
sufficiently large transmural pressure Pin or tension N guarantees the existence of steady
states of arbitrarily long tubes (Poroshina & Vedeneev 2018).

Figure 3 shows that in most of the tube, its steady shape has a weakly changing radius
and a very small slope of the Rs(z) curve. The larger tube stiffness β, the closer Rs(z) is to
a constant, which admits the assumption of a constant steady-state radius in the subsequent
stability analysis. This assumption is even more adequate for tubes inclined with respect to
the gravity force, which compensates viscous pressure loss due to hydrostatic pressure rise.
In this case, the steady tube radius can be exactly constant, and the tube can be arbitrarily
long.

3. Local stability of elastic tube conveying fluid

Consider a local segment of the tube far from its inlet and outlet ends, whose radius Rs(z) is
nearly a constant. For the wavelength λ, we will assume that λ� L, where L is the distance
at which the tube radius is essentially changed. On the other hand, (2.36) is derived under
the condition λ
 R so that both inequalities

R � λ� L (3.1)

are assumed to be satisfied throughout the rest of the paper (figure 1).
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3.1. Perturbations of the constant-radius tube
Consider perturbations of the steady state

Q = 1 + Q′(z, t),

R = Rs(z) + R′(z, t).

}
(3.2)

Substitute these expressions into the system (2.35)–(2.37), and linearise. Taking into
account that due to non-dimensionalisation, Rs(z) ≈ 1, the linearised system of equations
for perturbations takes the form

∂Q′(z, t)
∂z

+ 2π
∂R′(z, t)

∂t
= 0, (3.3)

∂Q′(z, t)
∂t

+ 2(3n + 1)

(2n + 1)π

∂Q′(z, t)
∂z

+ 16n
π Re

Q′(z, t) + 16(1 − 3n)

π Re
R′(z, t)

+ 2(3n + 1)

(2n + 1)π

∂R′(z, t)
∂z

+ π
∂P′

∂z
= 0, (3.4)

P′ = β R′(z, t) + m
∂2R′(z, t)

∂t2
− N

∂2R′(z, t)
∂z2 . (3.5)

3.2. Dispersion relation for travelling waves
We will first study local stability of a tube. Substitute (3.5) into (3.4) and consider
travelling wave solutions Q′ = Q̂ exp(i(kz − ωt)), R′ = R̂ exp(i(kz − ωt)). After simple
transformations, we obtain the dispersion relation

F(ω, k) =
(

1 + mk2

2

)
ω2 +

(
16n
π Re

i − 2(3n + 1)k
π(2n + 1)

)
ω

+ 8(1 − 3n)k
π2 Re

i − k2β

2
+ k2(3n + 1)

π2(2n + 1)
− Nk4

2
= 0. (3.6)

Since this equation is quadratic in ω, its discriminant is given by

D = − (16n)2

π2 Re2 + 2k2β − 32(n + 1)k
π2 Re (2n + 1)

i + 4(3n + 1)nk2

(2n + 1)2π2

+ 2Nk4
(

1 + mk2

2

)
− 2mk2

(
8(1 − 3n)k

π2 Re
i − k2β

2
+ k2(3n + 1)

π2(2n + 1)

)
, (3.7)

and the roots are obtained readily as

ω1,2(k) = 2
2 + mk2

[
(3n + 1)k
(2n + 1)π

− 8n
π Re

i ± 1
2

√
D
]

. (3.8)

It is seen from (3.8) that one branch of ω always has a negative imaginary part. Thus one
of the waves for each k is always damped, and only the other one can be growing, yielding
the instability.
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Instability of elastic tubes conveying power-law fluids

β

n
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0

0.6

0.4

0.40.2 1.00.8

1.0

0.8

Stability

Figure 4. Instability region for long waves.

3.3. Instability criterion
In accordance with the assumptions of the model, we will restrict ourselves to the case of
long waves, k → 0. Analysing orders of each term in the dispersion relation (3.6), it can
be seen that this case is equivalent to putting m = N = 0, i.e. neglecting the tube tension
and inertia.

The wave is growing if Im ω(k) > 0. The expression for Im ω(k) is derived from (3.8):

Im ω = − 8n
π Re

± 16k(n + 1)√
2π2 Re (2n + 1)

×
[

2k2
(

β + 2(3n + 1)n
(2n + 1)2π2

)
− (16n)2

π2 Re2 +
{

322k2(n + 1)2

π4 Re2 (2n + 1)2

+ 4k4
(

β + 2(3n + 1)n
(2n + 1)2π2

)2

− 4k2
(

β + 2(3n + 1)n
(2n + 1)2π2

)
(16n)2

π2 Re2 + (16n)4

π4 Re4

}1/2
⎤
⎦

−1/2

.

(3.9)

The inequality Im ω > 0, by eliminating square roots by raising to the second power, is
reduced to

8(n + 1)2

π2(2n + 1)2n2

(−(6n3 − n2 − 1)

2n2π2(2n + 1)
− β

)
k4 > 0. (3.10)

It is seen, first, that the change of sign of Im ω(k) is not possible for non-zero k, so all long
waves are either damped or growing. Second, the instability criterion Im ω > 0 is reduced
to the inequality

β < βfl(n) = −(6n3 − n2 − 1)

2n2π2(2n + 1)
. (3.11)

Since β > 0, instability can occur only if the right-hand side is positive. This is the case
for

n < 0.611. (3.12)

The instability region β < βfl(n) is shown in figure 4.
Note that the instability criterion does not depend on Reynolds number Re, which

governs absolute values of the wave growth rates, but not their signs. Also, it is seen
that axisymmetric instability is possible only for essentially pseudoplastic (shear-thinning)

941 A61-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

33
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.332


A. Podoprosvetova and V. Vedeneev

fluids; in particular, instability modes of Newtonian fluid flows in elastic tubes can only be
non-axisymmetric.

3.4. The role of non-Newtonian viscous loss on the instability
As discussed in § 2.2.5, it is a common practice in biomechanics to include non-parabolic
velocity distribution into the model, but to assume Newtonian pressure loss. The question
arises as to whether such modelling of a truly non-Newtonian fluid can yield the instability.

Let us consider a model where the non-Newtonian properties are included only in the
convective derivative term of the momentum equation, but not into the viscous loss term,
by putting n = 1 in the third term of (2.36). Then the re-derived dispersion relation reads(

1+ mk2

2

)
ω2+

(
16

π Re
i − 2(3n+1)k

π(2n + 1)

)
ω − 16k

π2 Re
i − k2β

2
+ k2(3n + 1)

π2(2n + 1)
− Nk4

2
= 0.

(3.13)

By analysis similar to that in §§ 3.2 and 3.3, we get the condition of Im ω > 0 in the
form

32n2

π2(2n + 1)2n2

( −2n
π2(2n + 1)

− β

)
k4 > 0. (3.14)

Since β and n are positive, this inequality cannot be satisfied. Hence the non-Newtonian
pressure loss is crucial for the instability; if it is not taken into account, then the instability
region is absent, even when the non-Newtonian velocity profile is included into the model.

4. Absolute and convective instability

Even if the tube conveying pseudoplastic fluid is unstable, this instability might not be
observed if the instability is convective. In this case, localised perturbations grow but
also travel along the tube, and can leave it while having small amplitude. However, if the
instability is absolute, then localised perturbations grow such that the disturbed region
widens both downstream and upstream. Localised perturbation in the general form can be
written as ∑

j

∫ +∞

−∞
Aj(k) exp(i(kz − ωj(k) t)) dk, (4.1)

where the sum is taken over all temporal waves. The absolute or convective nature of
instability is determined by the asymptotic value of this integral as t → +∞, which is
calculated by deforming the integration path in the k-plane and applying the method of
steepest descent. The criterion of absolute instability is given by Briggs (1964) and Bers
(1983), and consists of two conditions:

(a) The existence of a saddle point ωs of function ω(k) in the upper half-plane of the
ω-plane, i.e. dω/dk = 0 at ω = ωs, Im ωs > 0.

(b) The deformed integration path passes through this saddle point. This condition can
be re-formulated in terms of spatial waves collision. Namely, in the saddle point
of ω(k), the inverse function k(ω) has a branch point. Then two merged branches,
k1(ωs) = k2(ωs), must correspond to waves travelling in opposite directions, i.e.
to upstream and downstream waves. This means that either Im k1(ω) → +∞,
Im k2(ω) → −∞ as Im ω → +∞, or vice versa.
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Instability of elastic tubes conveying power-law fluids

As the absolute instability deals with spatial branches, it is convenient to rewrite the
dispersion relation (3.6) as a polynomial in k:

F(ω, k) = −Nk4

2
+
(

mω2

2
+ (3n + 1)

π2(2n + 1)
− β

2

)
k2

+
(

8(1 − 3n)

π2 Re
i − 2(3n + 1)

π(2n + 1)
ω

)
k + ω2 + 16n

π Re
iω = 0. (4.2)

4.1. Reynolds number effect
Before proceeding to the absolute instability analysis, let us first analyse the effect of the
Reynolds number. We have seen in § 3.1 that it does not affect the instability condition.
However, it will affect the absolute/convective instability condition. On the other hand, its
role can be estimated prior to the analysis. Indeed, after substitution

k = k′

Re
, ω = ω′

Re
, N = N′ Re2, m = m′ Re2, (4.3a–d)

the Reynolds number is eliminated from the dispersion relation. This means that the
absolute instability condition in terms of β and n for given N, m, Re is the same as for
N′ = N/Re2, m′ = m/Re2, and Re′ = 1. That is why in all numerical examples below,
we will formally put Re = 1, and recalculation of the absolute instability boundary to the
desired Re consists just in re-scaling of the tube tension and mass. Moreover, the larger
Re (and hence the better the assumption of constant steady tube radius is satisfied), the
smaller k and ω responsible for absolute instability, which, in turn, the better satisfies the
assumption of long wave and low frequency.

4.2. Zero tube mass and tension
We will start the analysis from the simplest case, N → 0, m → 0. We will assume that
short waves, which are not covered by the model employed, can be neglected in the branch
point analysis, but they are damped in the higher-fidelity model so that the initial-value
problem is well-posed.

Equation (4.2) for k(ω) for the case N = m = 0 is quadratic, and consequently there
are two spatial branches. The branch point of the k(ω) function is given by equating the
discriminant to zero. After simple transformations, we again obtain a quadratic equation
for branch points ωs:

Dk = 4
(

(3n + 1)2

π2(2n + 1)2 − 3n + 1
π2(2n + 1)

+ β

2

)
ω2

− 4
(

8(3n + 1)(1 − 3n)

π3 Re (2n + 1)
+
(

3n + 1
π2(2n + 1)

− β

2

)
16n
π Re

)
iω − 82(1 − 3n)2

π4 Re2 = 0.

(4.4)

It is easily seen from (4.4) that the condition Im ωs > 0 is satisfied if and only if the
expression in parenthesis of the second term coefficient is positive, i.e.

(3n + 1)(1 − 3n)

2n(2n + 1)
+ 3n + 1

2n + 1
− π2β

2
> 0, (4.5)
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Figure 5. Regions of absolute (AI) and convective (CI) instability for N = m = 0.

which is rewritten as

β < βabs = (3n + 1)(1 − n)

π2n(2n + 1)
. (4.6)

The condition (4.6) shows that a saddle point of ω(k) with Im ωs > 0 exists only for
sufficiently soft tubes.

Consider the second absolute instability condition, namely, wave directions. Solutions
k(ω) of the dispersion relation (4.2) as |ω| → ∞ for N = m = 0 are given as

k1,2 =
(

3n+1
π2(2n+1)

− β

2

)−1
⎛
⎝ 3n+1

π(2n+1)
±
√(

3n + 1
π(2n + 1)

)2

−
(

3n+1
π2(2n+1)

− β

2

)⎞⎠ω.

(4.7)
It is easy to see that spatial waves run in opposite directions if

3n + 1
π2(2n + 1)

− β

2
< 0 ⇒ β > βdiv = 2(3n + 1)

π2(2n + 1)
. (4.8)

Note that this condition coincides with the criterion of the steady tube narrowing, (2.40).
If it is not satisfied, then Im k1,2(ω) → +∞ as Im ω → +∞, i.e. both waves travel
downstream.

Consequently, the criterion of absolute instability is written as

βdiv(n) < β < βabs(n). (4.9)

This condition can be satisfied only for n < 1/3, since the three curves βdiv(n), βabs(n),
βfl(n) are crossed at n = 1/3. The region of absolute instability is shown in figure 5.

Note that convective instability regions, surrounding the absolute instability region in
figure 5, are different. The one lying below the absolute instability represents parameters
for which both waves are travelling downstream so that any perturbation also travels
downstream and leaves any finite region at a finite time. The saddle point of ω(k), although
it exists, has no relation to asymptotic behaviour of the tube’s localised perturbations.
Convective instability lying above the absolute instability region represents parameters for
which one wave is travelling downstream and the other is travelling upstream. However,
the saddle point ω(k) lies in the region Im ω < 0, so localised wave packets are convected
downstream.
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Instability of elastic tubes conveying power-law fluids

Although for N = m = 0 there is no need to consider the topology of function ω(k)
and the integration path for the absolute instability analysis, this will be necessary for the
general case. That is why we first consider these features for N = m = 0.

Branch points of ω(k) are given by zeros of the discriminant (3.7). Putting N = m = 0
and substituting k = iκ, this yields the quadratic equation

D0(κ) =
(

n(3n + 1)

π2(2n + 1)2 + β

2

)
κ

2 − 8(n + 1)

π2(2n + 1) Re
κ + 64n2

π2 Re2 . (4.10)

For β < βfl, this equation has two positive real roots κ, which means that there are two
pure imaginary branch points kb1, kb2 with Im kb1,2 > 0.

Saddle points of ω(k) (branch points of the inverse function k(ω)) are given by the
conditions F(ω, k) = 0, ∂F(ω, k)/∂k = 0, where F is the dispersion relation given by
(3.6) or (4.2). This system is transformed to the quadratic equation

F0(κ) =
(

−a + π2(2n + 1)2

(3n + 1)2 a2
)

κ
2 + 8

(2n + 1)(n + 1)

(3n + 1)2 Re
aκ

+ 16(2n + 1)(1 − 3n)(6n2 + 3n + 1)

π2 Re2 (3n + 1)2
, (4.11)

where

a = 3n + 1
π2(2n + 1)

− β

2
. (4.12)

It can be shown that for N = m = 0, both saddle points ks1, ks2 are pure imaginary
for β < βdiv , while complex and symmetric with respect to the imaginary axis (i.e.
Im ks1 = Im ks2, Re ks1 = −Re ks2) for βdiv < β < βfl. When β → βdiv , saddle points
tend to infinity along either the imaginary axis or the real axis (for β → βdiv − 0 and
β → βdiv + 0, respectively) as |ks1,2| ∼ 1/

√|β − βdiv|.
For β = βfl, all branch and saddle points collapse into a single point, and for β > βfl,

saddle points become pure imaginary, while branch points are symmetrical with respect to
the imaginary axis. We will not consider this case in more detail, because in this case the
tube is stable.

As an example, figure 6 shows level lines Im ω(k) = const. in the complex k-plane
for two branches ω(k). For 0 < β < βdiv , both spatial waves run in the same direction
(Im k1,2 → +∞ as Im ω → ∞), so that the integration path can be deformed far down, as
shown in figure 6(a), where Im ω < 0 along the path so that the instability is convective. In
this case, saddle points do not govern asymptotic behaviour of the localised perturbation.
For β > βdiv , spatial waves run in opposite directions, and the integration path yielding
the asymptotic behaviour passes through both saddle points, as shown in figure 6(b).

4.3. Effect of a small tube tension
Let us now consider the effect of non-zero but small N with m = 0.

First, consider the locations of branch points of ω(k), given by zeros of (3.7). Putting
m = 0 and, as in the previous subsection, substituting k = iκ, we have

D(κ) = −N
2

κ
4 + D0(κ) = 0. (4.13)

It is seen that for sufficiently small N, all four roots of this equation are real, i.e. branch
points kb are pure imaginary (figure 7). When N is increasing, branch points κ2 and
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Im k
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Re k
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kb1

ks1 

Im k

Re k

kb2

kb1 ks2ks1

20

10

(b)(a)

ks2

Figure 6. Level lines Im ω(k) = const. in the complex k-plane (the increase of Im ω corresponds to the
change of colour from blue to yellow) and the integration path yielding the asymptotic behaviour of localised
perturbation. Parameters are N = m = 0, n = 0.1, and (a) β = 0.1 < βdiv , (b) βdiv < β = 0.3 < βfl. Saddle
points of ω(k) are shown by circles, and branch points by squares. Branch cuts are shown by dashed lines, and
the integration path by a thick continuous line.

κ

D

κ1 κ2 κ4κ3

Figure 7. Plot D(κ) for N = 0 (dashed), small N > 0 (thin), and large N > 0 (thick). Arrows show motions
of κ2,4 as N increases.

κ4 tend to each other and coalesce at a certain N, after which they become complex
conjugates. In the plane k = iκ, they become symmetrical with respect to the imaginary
axis. The other two branch points, k1 and k3, stay pure imaginary, first with positive and
second with negative imaginary parts for any N.

Now consider the locations of the saddle points. The system of equations F(ω, k) = 0,
∂F(ω, k)/∂k = 0, is transformed to the system

−3
2

Nκ
4 − aκ

2 + 16n
π Re

σ + σ 2 = 0,

2Nκ
3 + 2aκ + 8(1 − 3n)

π2 Re
− 2(3n + 1)

π(2n + 1)
σ = 0,

⎫⎪⎪⎬
⎪⎪⎭ (4.14)
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Figure 8. Level lines Im ω(k) = const. in the complex k-plane, and the integration path yielding the
asymptotic behaviour of localised perturbation. Parameters are m = 0, n = 0.1, β = 0.3 > βdiv , and (a)
N = 0.0015, (b) N = 0.003. Saddle points of ω(k) are shown by circles, and branch points by squares. Branch
cuts are shown by dashed lines, and the integration path by a thick continuous line.

where k = iκ and ω = iσ . It is seen that for N �= 0, there are six saddle points of function
ω(k), instead of two points at N = 0. Eliminating σ , we obtain a single equation for κ:

F(κ) = π2(2n + 1)2

(3n + 1)2 N2
κ

6 +
(

2
π2(2n + 1)2

(3n + 1)2 a − 3
2

)
Nκ

4 + 8
(2n + 1)(n + 1)

(3n + 1)2 Re
Nκ

3

+ F0(κ). (4.15)

Let us consider saddle point locations as N → 0. Two points ks1,2 tend to saddle points
of the system with N = 0. The other four points tend to infinity as κ ∼ 1/

√
N. After

substitution κ = λ/√N and keeping the leading order, we have

π2(2n + 1)2

(3n + 1)2 λ
4 +

(
2

π2(2n + 1)2

(3n + 1)2 a − 3
2

)
λ2 +

(
−a + π2(2n + 1)2

(3n + 1)2 a2
)

. (4.16)

The resulting equation is bi-quadratic with positive discriminant, i.e. all its roots are real.
For β > βdiv , both roots λ2 are positive. This means that four additional saddle points

ks3,4,5,6 are pure imaginary; imaginary parts of two of them are positive, and of the other
two are negative. The topology of level lines Im ω(k) = const. for this case is shown in
figure 8. It is clear that additional saddle points do not govern asymptotic behaviour of
localised perturbation, so the same saddle points ks1,2 drive the absolute instability as at
N = 0. Note that the asymptotic behaviour of the second, damped, temporal wave is driven
by ks5, but this wave does not result in instability and is not considered below.

The other case, β < βdiv , represents a more interesting situation. In this case, the
instability is convective at N = 0, because there are no saddle points driving the
asymptotic behaviour of a perturbation (figure 6a). For N �= 0, one root λ2 of (4.16) is
negative and the other is positive, i.e. two additional saddle points ks3,4 are real, and the
other two ks5,6 are pure imaginary as N → 0. The topology of level lines Im ω(k) = const.
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Figure 9. Level lines Im ω(k) = const. in the complex k-plane, and the integration path yielding the
asymptotic behaviour of localised perturbation. Parameters are m = 0, n = 0.1, β = 0.1 < βdiv , and (a)
N = 0.0001, (b) N = 0.0002. Saddle points of ω(k) are shown by circles, and branch points by squares. Branch
cuts are shown by dashed lines, and the integration path by a thick continuous line.

for this case is shown in figure 9; it seen that two additional saddle points ks3,4 drive the
nature of instability. To calculate Im ωs, we have to consider the next approximation of the
saddle points as N → 0: κ = λ/√N + κ

′, and linearise (4.15) with respect to κ
′. It can

be shown that Im κ
′ → const. as N → 0, which means that Im ωs → const. Calculation

of the limit constant yields the absolute instability region as N → 0 shown in figure 10.
Note that there is no continuity from small N > 0 to N = 0, because as N → 0, saddle
points ks3,4 driving the instability nature tend to infinity but Im ωs → const., whereas
at N = 0, such saddle points are absent. It is also worth mentioning that as N → 0, the
asymptotic form of localised perturbations is determined by short waves with wavelengths
∼ √

N. That is why this region is called ‘short-wave’ absolute instability in figure 10.
Note that as short waves do not satisfy the assumptions of the present model (§ 2.2), in
fact we can conclude only that the instability is not absolute for long waves, whereas its
actual nature can be determined only through a higher-fidelity model suitable for short
waves.

4.4. Arbitrary tube tension
For arbitrary N > 0, the absolute instability boundary can be found numerically. Starting
from the boundary shown in figure 10 for small N, we increase N gradually and follow
Im ω(ks1,2) that drives the instability nature. Results are shown in figure 11 for different
values of N. As can be seen, the increase of tension shortens, in terms of the β range,
the absolute instability region for n � 0.1, but makes it wider for n � 0.1. Note that
when N is not small, there is no separation between ‘regular’ and ‘short-wave’ absolute
instabilities, i.e. there is only a whole absolute instability region. At N ≈ 2.01, the
absolute instability boundary touches the horizontal axis at n ≈ 0.26, and for N > 2.01,
the absolute instability region splits into two unconnected regions.
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Figure 10. Regions of ‘regular’ absolute instability (AI1), short-wave absolute instability (AI2) and
convective instability (CI) for small N > 0, m = 0.
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Figure 11. Regions of absolute (AI) and convective (CI) instability for N = 0.0001, 0.1, 0.5, 1.5, 3.0, 10.0,
and m = 0. The bold line shows the long-wave stability boundary.

4.5. Effect of the tube mass
If both N �= 0 and m �= 0, then there are 6 branch points and 10 saddle points of function
ω(k) (instead of 4 and 6 points, respectively, for m = 0). Also, this function has two
poles at k = ±i

√
2/m. The structure of level lines Im ω(k) = const. becomes much more

sophisticated, as shown in figure 12. However, observation of this figure (and of similar
figures for other parameter values) shows that as well as for m = 0, saddle points ks1, ks3,
ks4 belong to the growing mode, while ks2, ks5, ks6 belong to the damped mode. (Note that
numeration of saddle points is different for β < βdiv and β > βdiv: for the latter case, ks1,
ks2, ks3 belong to the growing mode, while ks4, ks5, ks6 belong to the damped mode.) The
integration path yielding the asymptotic behaviour of localised perturbations is governed
by the same saddle points as at m = 0: ks3, ks4 for β < βdiv , and ks1, ks2 for β > βdiv .
Hence to analyse the instability nature, it is sufficient to watch Im ω(k) only at the same
saddle points.

For larger values of m, new (i.e. appeared only at m > 0) saddle points ks7,8,9,10 and
branch points kb5,6 collide with each other at the imaginary k-axis, and become complex
and symmetric with respect to the imaginary axis. However, they all do not drive the
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Figure 12. Level lines Im ω(k) = const. in the complex k-plane. (a) Growing ω(k) mode and the integration
path yielding the asymptotic behaviour of localised perturbation, (b) damped ω(k) mode. Parameters are n =
0.1, β = 0.1 < βdiv , N = 1.5, m = 0.6. Saddle points of ω(k) are shown by filled circles, branch points by
squares, and poles by empty circles. Branch cuts are shown by dashed lines, and the integration path by a thick
continuous line.
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Figure 13. Regions of absolute (AI) and convective (CI) instability for N = 1.5 (continuous) and N = 10.0
(dotted), and m = 0, 1, 5, 10. The bold line shows the long-wave stability boundary.

instability nature, and in all cases only the same two saddle points, as at m = 0, affect the
absolute/convective instability.

The results of calculations are shown in figure 13. It seen that the effect of mass is
destabilising: the absolute instability region becomes larger when m is larger. However,
this effect is mostly pronounced for n < 0.25; for n > 0.25, the change of the absolute
instability boundary due to the change of m is negligible.

4.6. On the isolated region of absolute instability
We have seen that for sufficiently large N, the absolute instability region is split into two
isolated regions: one contains small n, the other contains points with n = 1/3. Let us
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prove that the second small region exists for any N > 0 and m � 0. We start with the
consideration of m = 0.

Consider the point where three boundary curves intersect: n = 1/3, β = βdiv(n) =
βabs(n) = βfl(n) = 12/(5π2). Since a = 0, F0(κ) = 0, and it is seen from (4.15) that the
point k = 0, ω = 0 is a triple saddle point. A simple analysis shows that for n = 1/3 and
a small change of β = 12/(5π2) + β ′, one of the saddle points stays zero, and the other
two become pure imaginary for β ′ > 0 (a < 0), or complex and symmetric with respect
to the imaginary axis for β ′ < 0 (a > 0). In the first case, those two points do not drive
the instability nature, because the tube is stable, and k = 0, ω = 0 is the only saddle point
along the integration path.

For β ′ < 0, the structure of level lines Im ω = const. is similar qualitatively to
figure 9(a), and the integration path passes through those points. Let us prove that in these
points, Im ω > 0, i.e. points with n = 1/3, β < 12/(5π2) belong to the absolute instability
region for any N. As in the saddle point equation (4.15), we consider roots κ ≈ 0, and we
may neglect higher terms to obtain

− 3
2

Nκ
3 + 8(2n + 1)(n + 1)

(3n + 1)2 Re
Nκ

2 − aκ + 8(2n + 1)(n + 1)

(3n + 1)2 Re
a = 0. (4.17)

From this equation, it follows that κ → ±i
√

a/N as a → 0. From the second equation in
(4.14) and (4.17), we find that

sign Im ω = sign Re σ = sign Re(Nκ
3 + aκ) = sign Re(κ(Nκ

2 + a))

= sign Re(aκ
2 + 3Nκ

4/2) > 0, (4.18)

which finalises the proof.
So far, the case of m = 0 was considered. However, for m > 0, the effect of tube mass is

negligible. The only change in the saddle point system (4.14) and (4.15) is the addition of
an mω2/2 term in the definition of a (see (4.12)). For m = 0 and a → 0, we have σ ∼ κ

3,
and the change in a for m > 0 is of the order of κ

6. This term can be neglected in the
analysis of σ and κ as a → 0, so the conclusion for m �= 0 is the same: there is always
a portion of the absolute instability region in the lower vicinity of the point n = 1/3,
β = 12/(5π2).

The local instability nature plays a crucial role in the global stability of the spatially
inhomogeneous system (Le Dizès et al. 1996). In particular, it was shown that if the
infinite-length tube is locally weakened, then it is globally unstable if and only if the local
instability is absolute (Vedeneev & Poroshina 2018). In the next section, we will show that
there is a similar connection between instabilities of infinite- and finite-length tubes.

5. The stability of the finite-length elastic tubes conveying fluid

5.1. Global instability of long but finite-length tubes
It is known that the stability criterion for an arbitrarily large but finite length L of a
1-D system does not coincide with the stability criterion for an infinitely long system
(Kulikovskii 1966). The reason is that solutions in the form of spatially unbounded
travelling waves exist only in the infinitely long system, while in the finite-length system,
no matter how long it is, there is always wave reflection from the ends so that its
eigenmodes involve at least two travelling waves. A similar consideration in the 2-D case
yields the eigenmode structure in the form of four oblique waves reflecting from the four
boundaries (Kulikovskii 2006)
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The asymptotic method of global instability developed by Kulikovskii (1966) is an
effective method for the analysis of the eigenmodes and stability boundaries of systems
in which the size in one direction is much greater than in other directions. The criterion of
global instability is formulated as follows. The roots kj(ω) of the dispersion equation are
numbered in descending order of their imaginary parts Im kj(ω) as Im ω → +∞:

Im k1(ω) > · · · > Im ks(ω) > 0 > Im ks+1(ω) > · · · > Im kN(ω). (5.1)

The roots are then split into two groups: the first (upstream-travelling) with Im kj(ω) > 0,
j = 1, . . . , s, and the second (downstream-travelling) with Im kj(ω) < 0, j = s + 1, . . . , N.
Such a split of waves as Im ω → +∞ is always possible in any well-posed system;
otherwise, the growth rate Im ω(k) of travelling waves with k ∈ R is unlimited, and such
a system blows up. If these two groups remain separated by a strip parallel to the real axis
k, with a decrease in Im ω from +∞ down to 0, then the finite-length system is globally
stable. In the opposite case, ω with Im ω > 0 exist such that

Im(ku(ω) − kd(ω)) = 0, (5.2)

where ku is the root from the first group with the smallest Im k(ω), and kd is the root from
the second group with the largest Im k(ω).

Equation (5.2) defines a curve in the complex ω-plane, which we will refer to
as the Ω-curve. The discrete spectrum of the most growing (or the least damped)
eigenfrequencies of the finite system for large lengths L is located in the neighbourhood
of this curve (Kulikovskii 1966). When a part of this curve lies in the region Im ω > 0,
the finite-length system is globally unstable, because for sufficiently large L, there are
eigenfrequencies located near this part, i.e. with Im ω > 0.

It can be seen that the particular boundary conditions are not involved into the global
instability criterion. When L is sufficiently large, their role is only in the distribution of
the eigenfrequencies along the Ω-curve, but since the distance between eigenfrequencies
in the complex ω-plane is O(1/L), for sufficiently large L there will always exist an
eigenfrequency located sufficiently close to the upmost point of the Ω-curve. In other
words, the effect of the boundary conditions on the stability region becomes negligible for
large L.

Note that if the infinite-length system is absolutely unstable, then the long but
finite-length system is globally unstable, because the saddle point of ω(k) satisfies (5.2).
But in the case of convective instability of the infinite-length system, no conclusion on the
stability of the finite-length system can be made automatically.

Let us now apply the global instability criterion to the analysis of long, but finite-length
tubes.

First, for parameters Re, N, m, n, β, we find a saddle point of function ω(k) from which
the Ω-curve originates. Next, a mesh in the ω-plane is selected in the neighbourhood of
the saddle point. Four roots k(ω) of the dispersion equation (4.2) at each mesh point are
found numerically, and the values of ω corresponding to the Ω-curve are determined from
the condition of satisfying (5.2).

As an example, below we consider the dimensionless tension N = 1.5, Re = 100, and
zero wall surface density m = 0. We select a point n = 0.05, β = 0.3 (point 1) and
then gradually change the values of n and β, going clockwise from point 1 to point
13 (figure 14a) and following the motion of the saddle points of function ω(k) and the
Ω-curves emerging from them. The full cycle of the saddle points’ motion is shown in
figure 14b; after the collision of ω1 and ω2 described below, the location of the upper point
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Figure 14. (a) Regions of of absolute (AI) and convective (CI) instability and the sequence of the parameters
change. (b) Loci of ω(k) saddle points in the complex ω-plane for the cycle of the parameters from point 1 to
point 13, and then 1 again.
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Figure 15. Plots of Ω-curves in the complex ω-plane. Parameters are N = 1.5, m = 0, Re = 100. For (a),
n = 0.05, β = 0.3. For (b), n = 0.2, β = 0.3 (continuous line), and n = 0.3, β = 0.3 (dashed line). For (c),
n = 0.31, β = 0.3. Saddle points of ω(k) are shown by circles and squares. When the parameters n and β

change from point 1 to point 4, the directions of the curves’ motion are indicated by arrows.

ω1 is shown. Note that the ω-plane is always symmetrical with respect to the imaginary
axis.

For the values of β and n at point 1 (n = 0.05, β = 0.3), two saddle points (circles)
are located in the region Im ω > 0, and two Ω-curves emerge from these saddle points
(figure 15a). The other two saddle points (squares), which do not govern the instability,
are located on the imaginary axis at positive Im ω, and move towards decreasing their
values when moving from point 1 to point 2.

The saddle points approach each other, as shown in figure 15(b) for fixed β = 0.3 and
increasing n from 0.05 to 0.3, i.e. for the transition from the absolute instability (point 2;

941 A61-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

33
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.332


A. Podoprosvetova and V. Vedeneev

0

–3

–2

–4

–5

–4 –2–6 2

0

1

–1

–2

–3

3
4

n = 0.4

ω1
ω2

ω4

ω2ω4

5 6

n = 0.35

ω3

ω1Im
(ω

)

0

Re(ω)
–4 –2–6 2

Re(ω)

–7

–5

–4

–6

–8

6

6

7 7

β = 0.204

ω4 ω2

ω1 ω3

0–4 –2–6 2

Re(ω)

(b)(a) (c)
(×

1
0

–
3
)

(×
1
0

–
3
)

(×
1
0

–
3
)

(×10–4) (×10–4) (×10–3)

Figure 16. Trajectories of ω(k) saddle points in the complex ω-plane. (a) Motion from point 3 to point 4 (with
the collision of ω1 and ω2) and then to point 5 (with the collision of ω2 and ω4). (b) Motion from n = 0.35 to
point 6 through the point 5, and collision of ω1 and ω3. (c) Motion of ω1 and ω3 from point 6 to point 7.

figure 15(b), continuous lines) to the convective instability region (point 3; figure 15(b),
dashed lines). At the transition, Im ω at saddle points change their signs. As the saddle
points are the highest points of the Ω-curves, after the transition into the convective
instability region, the curves are completely moved into the Im ω < 0 region, i.e. the tube
becomes globally stable. Saddle points from another pair (squares) continue moving down
along the imaginary axis.

With a further increase of n from point 3 to point 4, and then to point 5, i.e. passing from
the convective instability to the stability region, the saddle points move as follows. First,
the saddle points approach each other (ω1 and ω2 in figure 16a), collide at the imaginary
axis, and start moving in opposite directions along the imaginary axis when crossing the
stability boundary. With a further increase of n, the saddle point ω1, which started moving
up, at n ≈ 0.35 turns back and starts also moving down (figure 16b). The second saddle
point, ω2, continues its motion down along the imaginary axis.

Simultaneously, there are two other saddle points, ω3 and ω4 (squares in figures 16a,b),
moving down along the imaginary axis Im ω. With increasing n, the saddle point ω2
catches up with the saddle point ω4 on the imaginary axis at n ≈ 0.4; they collide and come
off the imaginary axis (figure 16a), after which they become symmetrical with respect to
this axis. The saddle points ω1 and ω3 also converge with a decrease in Im ω. With an
increase of n, ω1 catches up with ω3 at point 6 (n = 0.5, β = 0.295); they collide and
come off the imaginary axis similarly to ω2 and ω4 (figure 16b).

The shape of the Ω-curves at point 4 is shown in figure 15(c). It is important that after
the first collision of ω1 and ω2, there is a piece of the Ω-curve that lies on the imaginary
ω-axis between the two collided points. After the second collision, of ω2 and ω4 (n ≈ 0.4),
an additional portion of the Ω-curve appears (figure 17a), which surrounds the saddle
points (indicated by squares) that came off the imaginary axis.

Now we fix the value n = 0.5 and decrease β, going from point 5 to point 9 through
points 6, 7 and 8. The Ω-curve changes its topology while moving from point 5 to point
7: at the point 6, where ω1 and ω3 collide, an additional closed segment of Ω-curve
appears around these saddle points (indicated by circles in figure 17b). At approximately
the same β, a closed segment of the Ω-curve surrounding ω2 and ω4 (indicated by squares)
collides with unbounded segments of the Ω-curve, yielding the configuration shown in
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Figure 17. Plots of Ω-curves in the complex ω-plane. Parameters are N = 1.5, m = 0, Re = 100. For (a),
n = 0.5, β = 0.3. For (b), n = 0.5, β = 0.295. For (c), n = 0.5, β = 0.25. Saddle points of ω(k) are shown by
circles and squares. When the parameters n and β change, the directions of the curves’ motion are indicated by
arrows.

figure 17(b), which ‘releases’ ω2 and ω4. After that, these saddle points neither belong to
the Ω-curve nor determine its topology, so they are not important for further analysis.

Let us continue decreasing β and move from point 6 to points 7, 8 and 9. The saddle
points ω1 and ω3, which are enveloped by closed segments of the Ω-curve, initially
move down, but then start moving up, with continuous increase of |Re ω| (figure 16c).
The Ω-curve at point 7 looks qualitatively similar to the case of n = 0.5 and β = 0.25
(figure 17c). These curves at points 8 and 9 are shown in figures 18(a) and 18(b),
respectively.

Next, we fix β = 0.05 and reduce n, following from point 9 to points 10, 11 and 12.
The value of |Re ω| of the saddle points decreases continuously, while Im ω increases (the
direction of their motion is shown by arrows in figure 18b). At n ≈ 0.425, the convex
portion of the Ω-curve intersects the axis Im ω = 0 (figure 18c), which signifies the
crossing of the global instability boundary (dashed line in figure 14a). At a lower n,
the saddle points also move into the region Im ω > 0, crossing the absolute instability
boundary (solid line in figure 14a). The closed segments of the Ω-curve surrounding ω1
and ω3 contract as shown for point 10 in figure 18(c), and disappear while passing to point
11 (figure 19a). After that bifurcation, ω1 and ω3 belong to the Ω-curve. At points 11
and 12, these saddle points are located in the region Im ω > 0; two pieces of the Ω-curve
emerge from these saddle points and intersect at the imaginary axis (figures 19a,b).

Finally, for the fixed n = 0.05, we increase β passing from point 12 to point 1. The
saddle points approach each other; both |Re ω| and Im ω of these points decrease. Point 13
is located just above the dash-and-dot line in figure 14(a), at which the saddle points pass
through each other at the imaginary axis, yielding the topology of the Ω-curve shown in
figure 19(c). To close the cycle, we move from point 13 to point 1, which does not change
the Ω-curve qualitatively, and yields the initial configuration shown in figure 15(a).

We can conclude that the criterion of global instability of long finite-length tubes
everywhere coincides with the absolute instability criterion of infinite tubes, except for
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Figure 18. Plots of Ω-curves in the complex ω-plane. Parameters are N = 1.5, m = 0, Re = 100. For (a),
n = 0.5, β = 0.15. For (b), n = 0.5, β = 0.05. For (c), n = 0.4, β = 0.05. Saddle points of ω(k) are shown by
circles. When the parameters n and β change from point 8 to point 10, the directions of the curves’ motion are
indicated by arrows.
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Figure 19. Plots of Ω-curves in the complex ω-plane. Parameters are N = 1.5, m = 0, Re = 100. For (a),
n = 0.1, β = 0.05. For (b), n = 0.05, β = 0.05. For (c), n = 0.05, β = 0.2. Saddle points of ω(k) are shown
by circles. When the parameters n and β change from point 11 to point 13, the directions of the curves’ motion
are indicated by arrows.

a very tiny region near the lower part of the absolute/convective instability boundary
(between continuous and dashes lines in figure 14a). This difference between global and
absolute instabilities is not surprising, because, in general, global instability follows from
absolute instability, but the opposite conclusion is not correct (Kulikovskii 1966). An
explicit example of this difference is given by the panel flutter theory (Vedeneev 2016).
In that case, there are two mechanisms of instability. One, the coupled-mode flutter, is
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P(–L1 – L/2, t) P(–L/2, t) P(L/2, t) P(L/2 + L2, t)

R(z, t)

z

Figure 20. Axisymmetric perturbation of the elastic finite-length tube.

driven by the ω(k) saddle point, and its global and absolute instability criteria coincide.
However, the other, single-mode flutter, in driven by the Ω-curve and has no relation to
the saddle point; their global and absolute instability regions are completely different.

Another feature worth mentioning is that at the transition through the dash-and-dot
curve in figure 14(a), the saddle point is purely imaginary. This means that the instability
at this curve is static: the tube inflates monotonically. Hence this curve is the boundary
between the divergence and flutter of a finite-length tube.

5.2. Stability of finite-length tubes of an arbitrary length
Let us now move from the asymptotic analysis as L → ∞ to the exact eigenvalue problem
for a given L.

5.2.1. Frequency equation
Consider a cylindrical tube of length L with elastic walls fixed on rigid cylindrical tubes
of lengths L1, L2, and non-Newtonian fluid flowing inside (figure 20).

The dispersion equation (4.2) for the wavenumber k is a fourth-order equation, hence it
is necessary to specify four boundary conditions. We will consider boundary conditions
similar to those used by Jensen & Heil (2003) and Stewart, Waters & Jensen (2009).
Namely, first, we specify tube radius R(z, t) = 1 at z = ±L/2, where the elastic segment
is attached to a rigid tube. From (2.35), we immediately rewrite these conditions in terms
of the flow rate:

∂Q(−L/2, t)
∂z

= ∂Q(L/2, t)
∂z

= 0. (5.3)

Second, constant pressures are set at rigid segment ends z = −L1 − L/2, L2 + L/2,
which are transferred to elastic segment ends as

P
(

−L
2
, t
)

= P
(

−L1 − L
2
, t
)

− L1

(
∂Q
∂t

+ 16Qn

π Re R3n−1

)
1

πR2 ,

P
(

L
2
, t
)

= P
(

L
2

+ L2, t
)

+ L2

(
∂Q
∂t

+ 16Qn

π Re R3n−1

)
1

πR2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.4)

Linearising and using (5.3), we rewrite these conditions in terms of perturbations (denoted
by a prime):

P′
(

−L
2
, t
)

= −L1

π

(
∂Q′

∂t
+ 16nQ′

π Re

)
, P′

(
L
2
, t
)

= L2

π

(
∂Q′

∂t
+ 16nQ′

π Re

)
. (5.5a,b)
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Pressure perturbations P′(±L/2, t), in turn, can be expressed through the flow rate
perturbations Q′(±L/2, t) by using (2.37) and (2.35):

N
2π

∂3Q′

∂z3 + L1

π

(
∂2Q′

∂t2
+ 16n

π Re
∂Q′

∂t

)
= 0, L = −L

2
,

N
2π

∂3Q′

∂z3 − L2

π

(
∂2Q′

∂t2
+ 16n

π Re
∂Q′

∂t

)
= 0, L = L

2
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.6)

so that all four boundary conditions (5.3), (5.6) are expressed through the flow rate.
Consider the eigenmode solution

Q(z, t) = exp(−iωt)
4∑

j=1

Qj exp(i kj(ω) z), (5.7)

where kj(ω) are four different roots of the dispersion equation, and Qj are unknown
constants. Satisfying boundary conditions (5.3), (5.6), we obtain the frequency equation

det M = 0, (5.8)

where the matrix M coefficients are

M1j = ikj exp
(

−ikj
L
2

)
,

M2j = ikj exp
(

ikj
L
2

)
,

M3j = − N
2π

ik3
j exp

(
−ikj

L
2

)
− L1

π

(
ω2 + 16ni

π Re
ω

)
exp

(
−ikj

L
2

)
,

M4j = − N
2π

ik3
j exp

(
ikj

L
2

)
+ L2

π

(
ω2 + 16ni

π Re
ω

)
exp

(
ikj

L
2

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.9)

j = 1, 2, 3, 4. The frequency equation (5.8) has a discrete set of solutions ωj, j ∈ N, and
the stability criterion of the jth mode is Im ωj � 0. The tube is stable if and only if all its
modes are stable.

5.2.2. Method for finding the instability region
When the axial tension N and wall surface density m are not taken into account (i.e. N =
m = 0), there are only two spatial waves, so we retain only two boundary conditions (5.3),
and the 4 × 4 matrix M is reduced to a 2 × 2 matrix. The frequency equation in this case
is

det M = k1k2(eik1L − eik2L) = 0 ⇐⇒ k1(ω) − k2(ω) = ±2πj
L

, j ∈ N. (5.10)

It is easy to show that irrespective of the tube length L, the instability region for the
finite-length tube coincides with the absolute instability region for infinitely long tubes
βdiv < β < βabs; there, in the case of instability, all modes are growing. Note that the
problem of finite-length tubes for β < βdiv and N = m = 0 is not well-posed, because
both spatial waves travel downstream, and both boundary conditions must be assigned at
the inlet, instead of one at the inlet and one at the outlet for β > βdiv .
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In what follows, the region β < βdiv is not considered, and the corresponding area is
hatched below in instability maps, for the following reasons. First, one should gradually
increase the flow rate to decrease dimensionless β below βdiv . However, prior to βdiv , one
must pass the range βdiv < β < βabs, which is already unstable. The latter instability will
therefore develop first and will destroy the steady flow. Second, even if the static state
with β < βdiv is organised, the most growing eigenfrequency has zero real part, i.e. the
tube will be unstable temporally in the form of static divergence. A steady tube with such
parameters will bulge immediately.

It is worth mentioning that the asymptotic Ω-curve for β < βdiv has quite a
sophisticated structure, consisting of three segments: closed segments, a purely imaginary
segment, and an unbounded segment (figure 18). For the case of an empty tube (without
fluid), the Ω-curve is simply a real ω-axis, which corresponds to the unbounded segments
of the curve for the filled tube. Hence the most growing eigenmodes do not have their
counterparts in an empty tube, yielding the problem of eigenmode identification. The
region β > βdiv is free from this problem, because the most growing modes correspond to
unbounded segments of the Ω-curve, which have a direct analogue in an empty tube.

To find the instability region for N > 0, m > 0, the problem is solved numerically in
the following way. First, we take n and β values 0 < n < 1/3, βdiv(n) < β < βabs(n), and
calculate the jth eigenfrequency ωj(N, m) for N = 0, m = 0, from (5.10). Then, taking this
value ωj(0, 0) as initial, we increase N and m gradually to the desired values, and calculate
ωj(N, m) numerically for N �= 0, m �= 0, and the same n, β. Next, starting from this value,
n and β are changed to find the stability boundary of the jth mode in the (n, β)-plane for
given N, m. In addition, we can change the lengths L of the elastic tube and L1, L2 of the
rigid tubes, and the value of the Reynolds number Re. With this algorithm, we track each
mode separately.

We will restrict ourselves to analysis of the first mode, which, on the one hand, is
the most growing eigenmode, thus representing the full instability region, and, on the
other hand, has the longest wavelength, thus the best fitting assumptions of the model. To
illustrate that the first mode is indeed the most growing, figure 21 shows eigenfrequencies
calculated for

β = 0.3, n = 0.2, N = 1.5, m = 0, Re = 100, L1 = L2 = 0, (5.11a–f )

and three values of the elastic tube length, L = 200, 100 and 50. It is seen that that in
all cases, the eigenvalues lie perfectly along the asymptotic Ω-curve, just moving along
it when L is changed. The first mode (the one with the lowest |Re ω|) has the highest
growth rate, because the Ω-curve has the upmost point in the saddle point of ω(k) (see
the case β > βdiv in § 5.1 for details). Note that at saddle points of ω(k), the frequency
equation (5.8) is always satisfied; however, those are not eigenvalues of the boundary-value
problem, because at such points, two branches of k(ω) coincide, which yields two equal
matrix columns so that the corresponding eigenmode (despite the non-zero eigenvector of
the matrix M) is exactly zero.

5.2.3. Instability region of an elastic tube of finite length
First, we fix the lengths of the tubes and analyse the influence of the Reynolds number Re
and surface density m for various values of axial tension N on the stability. It is verified
that changes of the Reynolds number (Re = 10, 100, 1000) and surface density (m = 0, 10)
have negligible effect on the instability boundary. Parameters Re = 100, m = 0 are used
in the calculations below.
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Figure 21. Asymptotic Ω-curve and eigenfrequencies in the complex ω-plane for the parameters (5.11a–f )
and L = 200 (circles), L = 100 (crosses), L = 50 (triangles).
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Figure 22. First-mode instability region for: (a) L = 10, L1 = L2 = 0 and different N; (b) L1 = L2 = 0 and
different L; (c) L = 10 and different L1, L2.

Next, let us analyse the effect of tube tension N. Figure 22(a) shows the calculated
stability boundary for L = 10, L1 = L2 = 0 and N = 0.5, 1, 1.5; recall that N = 0
corresponds to the absolute instability boundary. Clearly, the increase of tension stabilises
the tube, shifting the instability region to smaller n.

The effect of the elastic tube length L is shown in figure 22(b). The increase of L
has a destabilising effect, because the instability region is larger for longer tubes for a
given tension N. As expected, the instability boundary of long tubes (L = 100) is close to
the boundary of global instability, which, in turn, coincides with the absolute instability
boundary of infinitely long tubes regardless of the tension N.

So far, rigid tube lengths were zero. Their elongation, while keeping L1 = L2, yields
stabilisation of the elastic tube, as shown in figure 22(c) for L1 = L2 = 0 and 10 for
tensions N = 0.5 and 1.5. However, their separate actions are very different. Figure 23
shows the effect of the elongation of the inlet rigid tube, and figure 24 the effect of the
outlet rigid tube. For the elastic tube lengths L = 50 and 100, the elongation of the inlet
tube yields strong stabilisation. Namely, for L1 = 1 and 5, the instability boundary is close
to the absolute instability boundary; however, further increase of L1 yields the reduction
of the instability region, more pronounced for a shorter elastic tube.

On the contrary, the elongation of the outlet tube shows strong destabilisation. For L2 =
1, 5, 10, the instability boundary is close to the boundary of absolute instability (figure 24).
But larger L2 results in the widening of the instability region.
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Figure 24. Instability region for N = 1.5, L1 = 0 and different L2, for (a) L = 50, (b) L = 100.

For a shorter elastic tube, L = 10, the same trends are much more pronounced. Namely,
we fixed one rigid tube length at L1,2 = 0, and checked the other tube length L2,1 = 1,
2, 5, 10. For the case of an elongating inlet tube, full stabilisation occurred already at
L1 � 2. For the case of an elongating outlet tube, the instability region rapidly becomes
much larger than the absolute instability region by just a slight increase of L2 (figure 25).

5.2.4. The explanation of the action of rigid tubes
As can be seen, calculations show that the longer inlet rigid tube stabilises the system,
while the longer outlet rigid tube destabilises the system. A similar conclusion was made
by Jensen & Heil (2003) for high-frequency oscillations in plane channel with elastic
wall insert. Although that work has a different problem formulation and assumptions,
this common observation can be explained similarly by considering the energy equation.
Let us consider linearised equations for small perturbations (3.3)–(3.5) (below, primes
are omitted). We multiply the momentum equation (3.4) by Q(z, t) and integrate over the
elastic tube from z = −L/2 to z = L/2. The use of boundary condition R(±L/2, t) = 0,
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Figure 25. Instability region for N = 1.5, L = 10, L1 = 0 and different L2.

continuity and tube wall equations (3.3), (3.5) yields

d
dt

(
1
2

∫
Q2 dz

)
+ 2(3n + 1)

(2n + 1)π

(
Q2

2

∣∣∣∣
L/2

−L/2
− 2π

d
dt

(
1
2

∫
R2 dz

))

+ 16
π Re

(
n
∫

Q2 dz + (1 − 3n)

∫
QR dz

)
+ πPQ|L/2

−L/2

+ 2π2 d
dt

(
1
2

∫ (
β

R2

2
+ m

(∂R/∂t)2

2
+ N

(∂R/∂z)2

2

)
dz
)

= 0. (5.12)

Consider neutral oscillation at the stability boundary. After integration over the
oscillation period, all total time derivatives are cancelled:

− 2(3n + 1)

(2n + 1)π

∫
Q2

2

∣∣∣∣
L/2

−L/2
dt − π

∫
PQ
∣∣∣∣
L/2

−L/2
dt

= 16
π Re

(
n
∫∫

Q2(z, t) dz dt + (1 − 3n)

∫∫
Q(z, t) R(z, t) dz dt

)
. (5.13)

This equation represents the balance of energy during the periodic motion: the total kinetic
energy flux and work done by pressure (the first and second terms on the left-hand side)
at inlet and outlet sections must by equal to the amount of energy dissipated by viscous
forces (right-hand side).

Now, let us estimate the effect of the rigid tube lengths. We consider two limit
cases: first, Lj = 0, which is equivalent to P(±L/2, t) = 0, and second, Lj → ∞, which
is equivalent to Q(±L/2, t) = 0, where j = 1, 2 stands for the inlet and outlet tubes,
respectively. Note that the second equivalence, as noted by Jensen & Heil (2003), can
be interpreted physically as follows: as Lj → ∞, the inertia of the fluid in the rigid tube
tends to infinity, which causes the flow rate perturbation to tend to zero. In both limit cases,
the work done by pressure in (5.13) is zero, and the energy balance can be rewritten as∫

Q2
(

−L
2
, t
)

dt −
∫

Q2
(

L
2
, t
)

dt = (2n + 1)π

(3n + 1)
D, (5.14)

where D is the dissipated energy given by the right-hand side of (5.13).
It is seen that the elongation of the inlet rigid tube diminishes the first term on the

left-hand side of (5.14), which yields less viscous dissipation required to sustain neutral
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oscillations. Hence the instability region will be smaller as L1 → ∞ than for L1 = 0. Note
that the absence of instability cannot be guaranteed, because D can, in general, be negative
due to the second term on the right-hand side of (5.13). The elongation of the outer rigid
tube cancels the second term on the left-hand side of (5.14), thus requiring more viscous
dissipation, compared to the absence of the outer tube, to keep the oscillations neutral.
This will yield a larger instability region as L2 → ∞ than for L2 = 0.

6. Conclusions

We derived a system of one-dimensional equations for axisymmetric perturbations of
power-law fluid flow in elastic tube. The derivation is conducted under the condition that
the wavelength is much larger than the tube diameter and much lower than the length at
which the steady tube diameter is changed significantly. Comparing to one-dimensional
systems analysed previously in literature, we include not only power-law cross-sectional
velocity distribution, but also viscous pressure loss that corresponds to laminar flow of a
power-law fluid.

Analysing this system, a local instability condition of axisymmetric perturbations is
derived in a closed form. The instability is possible only for n < 0.611. Consequently,
flow of a Newtonian fluid is stable with respect to axisymmetric perturbations, which is
in agreement with known experimental data on collapsible tubes, where the instability
always includes non-axisymmetric collapse of the tube and non-axisymmetric separation
of the flow. The instability for small n is essentially due to non-Newtonian pressure loss:
if only non-parabolic velocity distribution is taken into account, but viscous pressure loss
is considered as in Newtonian fluid, then the axisymmetric motion of the tube would be
stable for any n.

As a step towards the finite-length problem, the nature of instability is studied. For
small tension and tube mass, the absolute instability condition is found in a closed
form. ‘Regular’ absolute instability is possible only for n < 1/3, ‘short-wave’ absolute
instability for n < 0.47. The absolute instability boundary in the general case is calculated
numerically.

Finally, the finite-length problem is studied in two formulations. First, we analysed
global instability under the condition that the tube length L is large, and calculated the
shape of curve in the complex ω-plane that attracts eigenvalues as L → ∞. Surprisingly,
the shape of this curve and its bifurcations turned out to be very sophisticated, especially
at low tube stiffness β, where the steady tube is diverging (instead of contracting)
downstream due to viscous pressure loss. On the other hand, this range of β is not of
practical importance, because the instability occurs earlier at larger β. The latter range of
parameters is studied numerically for various elastic tube lengths and lengths of rigid inlet
and outlet tubes. We demonstrated that for long tubes, the instability region of the first
mode (which is the most unstable mode) tends to the global instability region that exists
at n < 1/3, and coincides with the region of absolute instability. Without inlet and outlet
rigid tubes, the instability region becomes smaller (shifts to lower n) for shorter elastic
tubes, but does not disappear completely. The effect of the axial tube tension is stabilising.

The effect of rigid inlet and outlet tubes is strong and more pronounced for lower elastic
tube length. Similarly to the findings of Jensen & Heil (2003), the elongation of the inlet
rigid tube is stabilising, and of the outer rigid tube is destabilising; these effects are
explained by the energy balance analysis. Moreover, for a sufficiently short elastic tube
and large outlet rigid tube, the instability region becomes quite large, significantly larger
than the global instability region attained as L → ∞.
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As the instability studied in this paper is not related to non-axisymmetric collapse of the
tube, which is always observed in experiments with collapsible tubes conveying Newtonian
fluids, it can occur at essentially positive transmural pressures. It can therefore be expected
that nonlinear development of this instability can be much different compared to ‘classical’
instability of collapsible tubes, and could be a matter of further theoretical or experimental
studies.
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Appendix A. Rigorous derivation of the assumed velocity profile

In § 2.2, we derived a 1-D equation of the fluid motion by assuming a Poiseuille velocity
distribution at each cross-section in each moment of time. In other words, not only base
flow, but also its perturbation has a similar axial velocity distribution. Here, we derive this
similarity in a more rigorous way. Let us consider Navier–Stokes equations (2.5)–(2.6).
Consider perturbation of a base flow vr = 0, vz = U(r), p = −kz + p0 (see (2.7a–c)).
After linearisation, the equations for perturbations (denoted by a tilde) are written as

∂ṽr

∂t
+ U

∂ṽr

∂z
= − 1

ρ

∂ p̃
∂r

+ μ

ρ

[
2

∂

∂r

((
∂U
∂r

)n−1
∂ṽr

∂r

)
− 2

r2

(
∂U
∂r

)n−1

ṽr

+ 2
r

(
∂U
∂r

)n−1
∂ṽr

∂r
+ ∂

∂z

(
n
(

∂U
∂r

)n−1 (
∂ṽz

∂r
+ ∂ṽr

∂z

))]
= 0, (A1)

∂ṽz

∂t
+ U

∂ṽz

∂z
= − 1

ρ

∂ p̃
∂z

+ μ

ρ

[
2

∂

∂r

(
n
(

∂U
∂r

)n−1 (
∂ṽz

∂r
+ ∂ṽr

∂z

))

+ n
r

(
∂U
∂r

)n−1 (
∂ṽz

∂r
+ ∂ṽr

∂z

)
+ 2

∂

∂z

((
∂U
∂r

)n−1
∂ṽz

∂z

)]
= 0. (A2)

As discussed in § 2.2, we will consider long-wave and low-frequency limits, by making
the coordinate and time transformation z = ζ/ε, t = τ/ε. After that, all derivatives with
respect to z and t will have the order of ε: ∂/∂z = ε ∂/∂ζ , ∂/∂t = ε ∂/∂τ . The pressure
gradient ∂p/∂z is the exception: it still has order 1, because it drives the axial velocity,
which is of order 1. Radial velocity, on the contrary, is of the order of ε: ṽr = εv̂

r.
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After the rescaling, the equations are rewritten as

ε2 ∂v̂r

∂τ
+ Uε2 ∂v̂r

∂ζ
= − 1

ρ

∂ p̃
∂r

+ μ

ρ

[
2ε

∂

∂r

((
∂U
∂r

)n−1
∂v̂r

∂r

)
− 2ε

r2

(
∂U
∂r

)n−1

v̂r

+ 2ε

r

(
∂U
∂r

)n−1
∂v̂r

∂r
+ε

∂

∂ζ

(
n
(

∂U
∂r

)n−1 (
∂ṽz

∂r
+ε

∂v̂r

∂ζ

))]
=0,

(A3)

ε
∂ṽz

∂τ
+ Uε

∂ṽz

∂ζ
= − 1

ρ

∂ p̃
∂z

+ μ

ρ

[
2

∂

∂r

(
n
(

∂U
∂r

)n−1 (
∂ṽz

∂r
+ ε2 ∂ṽr

∂ζ

))

+ n
r

(
∂U
∂r

)n−1 (
∂ṽz

∂r
+ε2 ∂ṽr

∂ζ

)
+2ε2 ∂

∂ζ

((
∂U
∂r

)n−1
∂ṽz

∂ζ

)]
=0.

(A4)

Terms of order 1 are present only in the z-momentum equation. An additional assumption
that ε/μ is small, or, in dimensionless quantities, ε Re � 1, yields the O(1) equation

1
ρ

∂ p̃
∂z

= μn
ρ

[
2

∂

∂r

((
∂U
∂r

)n−1
∂ṽz

∂r

)
+ 1

r

(
∂U
∂r

)n−1
∂ṽz

∂r

]
. (A5)

Denoting the pressure gradient perturbation as k̃ = ∂ p̃/∂z and using the base solution
(2.7a–c), we obtain the O(1) solution for the perturbation:

ṽr = 0, ṽz(r) = 1
n

k−(n−1)/nk̃
μ1/n 2−1/n n

n + 1

(
(R0 + R̃)(n+1)/n − r(n+1)/n

)
. (A6a,b)

It is seen easily that this solution is simply a perturbation of the distribution (2.7a–c)
caused by the pressure gradient and tube radius perturbations, while the distribution
itself keeps the same form as for the base flow. We conclude that the universal velocity
distribution (2.9) is valid both for the base and for the perturbed flows at the condition of
long wavelengths ∼1/ε, small frequencies ∼ε, and ε Re � 1.
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