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It is known that, apart from the growth of instability modes, the non-modal (algebraic)
mechanism of linear growth plays an important role in near-wall flows. In unbounded
flows, including submerged jets, the theoretical analysis of the non-modal growth
mechanism started only in the last decade; this mechanism has not yet been identified
in experiments. In the present work, experiments were conducted on the excitation
of a non-modal ‘lift-up’ growth mechanism. Special wavy structures (deflectors) were
introduced into a laminar round submerged jet, which excited a roller-like transverse
motion. Based on experimental results, we definitely identify the non-modal ‘lift-up’
growth mechanism of introduced disturbances. The development of perturbations in the
experiment qualitatively corresponds to the theoretically calculated optimal perturbations.
The features of the transition to turbulence caused by non-modal growth are considered.
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1. Introduction

Submerged jets (i.e. liquid-in-liquid or gas-in-gas jets) are widely used in technological
processes. The stability of jets and the transition to turbulence play an important role
in many applications. It is believed that submerged laminar jets are unstable in practice
because of their low critical Reynolds number, which does not exceed 40. In fact, such jets
have a relatively small region (of the order of 1–2 orifice diameters in length) in which
they retain a laminar structure. For this reason, it is extremely difficult to experimentally
study the mechanisms of perturbation growth in the laminar region using conventional
jets. The understanding of such mechanisms would definitely shed light on the roots
of the laminar–turbulent transition and provide well-grounded control strategies for the
transition.
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Recently, the situation has changed, as the set-up described by Zayko et al. (2018) creates
submerged air jets with an essentially longer laminar region, 5D and more in length, where
D is the orifice diameter. Using this facility, the analysis of small sinusoidal perturbations
was performed, and the experimentally measured wavelengths of growing perturbations,
the amplification curves, and the radial distributions of perturbations agreed with the
numerical values obtained using the modal stability theory (Gareev et al. 2022).

The goal of the present investigation was to study the non-modal development of
disturbances in a submerged jet. It is well known that in addition to the modal linear growth
mechanism in near-wall flows, there are two non-modal linear growth mechanisms (Farrell
& Ioannou 1993): the Orr mechanism and the ‘lift-up’ mechanism. While the first is a
purely two-dimensional process and leads to a relatively weak growth, the second, ‘lift-up’,
gives a much stronger growth of three-dimensional disturbances and is responsible for the
bypass transition in near-wall flows. The following review outlines the current state of this
field.

1.1. Theoretical studies of non-modal growth
The first theoretical papers on non-modal growth and the ‘lift-up’ mechanism were
published about 40 years ago (Ellingsen & Palm 1975; Landahl 1980). Non-modal growth
for viscous laminar flows was studied in the context of the non-Hermitianity of the
operators of linearized equations (the Orr–Sommerfeld and Squire equations in the case
of a plane-parallel base flow) by Butler & Farrell (1992). Optimal temporal perturbations
(i.e. the perturbations that grow most rapidly for a given wavenumber) of Poiseuille flows
in pipes were studied by Schmid & Henningson (1994). They showed that perturbations,
which are independent of the axial coordinate, achieve the greatest non-modal growth.
They also demonstrated that the maximum perturbation energy in this case is proportional
to the square of the Reynolds number: Gmax ∼ Re2. A study of the development of spatial
optimal perturbations (i.e. perturbations that are most amplified at a given distance for a
given frequency) for a pipe flow was performed by Reshotko & Tumin (2001). In order
to regularize the problem, they considered only downstream-travelling perturbations. The
results indicated that the largest non-modal growth in a round pipe occurs for stationary
perturbations.

The development of non-modal perturbations in boundary layers and their comparison
with experiment were theoretically studied by Andersson, Berggren & Henningson (1999)
using linearized boundary layer equations. They proposed an empirical relationship that
relates the level of turbulence of the external flow and the transitional Reynolds number.
It is known that in the case of an increased level of turbulence of the external flow, the
eN method based on the modal theory cannot be used. Andersson et al. (1999) proceeded
from the assumptions that the perturbation energy grows at an optimal rate, the initial
perturbation amplitude is proportional to the turbulence level of the external flow and
the transition occurs when a certain perturbation energy level is reached. Using these
assumptions, they obtained a model with one parameter, which, based on experimental
data, was assumed to be constant. The model obtained by the authors predicts the ‘bypass’
transition with good accuracy for external flow turbulence levels of 1 %–5 %. Tumin &
Reshotko (2001) made a similar analysis, but using the full Navier–Stokes equations
in the plane-parallel approximation. The stability of the boundary layer to non-modal
perturbations in the limit of large Reynolds numbers was studied by Luchini (2000);
he noted, as did Andersson et al. (1999), that in the case of large Reynolds numbers,
the maximum energy gain is proportional to the square of the displacement-thickness
Reynolds number. These studies led to the conclusion that in the boundary layer, the
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optimal perturbations in the initial station xin are longitudinal vortices, which develop
towards the final station xout into streamwise streaks, or streaky structures, i.e. defects in
the longitudinal speed.

There are many fewer works devoted to non-modal growth in jets and other unbounded
flows. Apparently, Boronin, Healey & Sazhin (2013) were the first to conduct non-modal
spatial analysis of round jets. Although the main goal of their paper was to study two-phase
(liquid-in-air) jets, they also presented results on the non-modal spatial growth for two
submerged jets for different perturbation frequencies, and the non-modal growth turned
out to increase as the frequency decreased.

Jiménez-González, Brancher & Martínez-Bazán (2015) and Jiménez-González
& Brancher (2017) investigated the non-modal temporal stability of round jets.
Jiménez-González et al. (2015) described the dependence of optimal axisymmetric and
helical (with azimuthal wavenumber n = 1) perturbations on the axial wavenumber.
They showed that as the axial wavenumber decreases, non-modal growth increases. The
principal features of axisymmetric and helical perturbations resemble Orr and lift-up
growth mechanisms of plane-parallel shear flows. In subsequent work, Jiménez-González
& Brancher (2017) considered a wider range of azimuthal wavenumbers and temporal
diffusion of the base flow. The analysis of n = 1 perturbations within the steady base flow
assumption was shown to be unreliable, because the base flow will change at the expected
optimal time. However, for n ≥ 2, the optimal times are much smaller, and the results of
such an analysis are acceptable.

Recently, the combination of modal and non-modal instabilities was studied by Wang
et al. (2021). Specifically, they analysed the stability of a round jet perturbed by a
finite-amplitude optimal perturbation. They showed that the increase of the optimal
perturbation amplitude decreases the growth rate of Kelvin–Helmholtz instability. This
effect is in agreement with preceding study by Marant & Cossu (2018), who analysed the
stability of an initially two-dimensional mixing layer perturbed by finite-amplitude optimal
perturbations.

A somewhat opposite problem formulation was analysed by Nastro, Fontane &
Joly (2020), who examined optimal perturbations of nonlinearly temporarily evolving
Kelvin–Helmholtz instability over a jet flow. They determined that, depending on the
velocity profile and azimuthal wavenumber, either an increase or decrease in the optimal
energy gain is possible compared with the unperturbed jet flow.

1.2. Experimental studies of non-modal growth
Streaky structures were initially experimentally discovered and studied in near-wall
laminar boundary layers, where they are associated with the bypass mechanism of
transition to turbulence (Morkovin 1984). In the case of a low intensity of external flow
turbulence, Tollmien–Schlichting waves are generated in the laminar boundary layers
(Schlichting 1979), whose linear development passes into a nonlinear stage, and then leads
to the appearance of turbulence. At a higher intensity of external turbulence, longitudinal
elongated vortex structures appear in the boundary layer. These are commonly called
‘streaky structures’. Apparently, their existence was first noted by Klebanoff (Kendall
1985). He found that in a laminar boundary layer with a level of free-stream turbulence
>0.3%, there was a low-frequency perturbation, whose amplitude was an order of
magnitude greater than the amplitude of the Tollmien–Schlichting waves. The spatial
correlation of the perturbation showed that its transversal size was comparable to the
boundary layer thickness. The first detailed experimental studies of streaky structures were
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performed by Kosorygin et al. (1984) and Kendall (1985). In these works, it was confirmed
that the spatial structures in the transverse direction have a size of the order of that of
the boundary layer. Kendall (1985) noted that the longitudinal velocity fluctuation grows
as the root of the longitudinal coordinate, and when the laminar–turbulent transition is
completed, it can reach 10 %. This result was also obtained by Westin et al. (2001), in
whose study the level of external turbulence varied from 1 % to 6 %.

Matsubara & Alfredsson (2001) used smoke imaging and hot-wire anemometry
measurements to study the streaky structures in the laminar boundary layer. Using
correlation analysis, they showed that in the presence of streaky structures in the boundary
layer, regions with increased and decreased longitudinal velocity are observed. These
regions’ characteristic transverse size is proportional to the displacement thickness δ∗.
The pattern of the spatial two-dimensional spectrum measured for the longitudinal α

and transverse β wavenumbers changes slightly downstream and corresponds to the
numerical results of Schmid & Henningson (2001): the maximum of the relative growth
of the perturbation energy found in the calculation is reached at α = 0, β ≈ 0.65, while
experiments by Matsubara & Alfredsson (2001) yield α = 0, β ≈ 0.35–0.8.

Fransson, Matsubara & Alfredsson (2005) experimentally confirmed the dependence of
the perturbation energy u2/U2∞ ∼ Tu2Rex (initially proposed by Andersson et al. (1999))
on the level of the free-stream turbulence Tu and the Reynolds number Rex = U∞x/ν.
Thus, the amplitude of the velocity disturbances is proportional to the level of natural
turbulence and, in accordance with the theory of optimal disturbances, the perturbation
energy depends quadratically (as Rex ∼ Re2

δ∗) on the displacement-thickness Reynolds
number.

Another approach to the study of streaky structures in laminar boundary layers is
associated with the formation of vortex structures by introducing localized controlled
perturbations. This was first done by Kozlov’s group, and the results of many years of
research are reflected in the book by Boiko et al. (2002). It was shown that secondary
instabilities can arise in streaky and similar vortex structures, which lead to the appearance
of turbulent spots and finally to the transition to turbulence. The influence of longitudinal
vortex structures of different natures (vortices behind roughness, Görtler vortices, etc.) on
the laminar–turbulent transition was considered by Kozlov et al. (2002). Grek, Katasonov
& Kozlov (2008) showed experimentally that streaky structures can also exist in the
boundary layer on a wing.

Although both modal and non-modal perturbations grow independently in a linear
regime, their interaction at the nonlinear stage can be surprisingly stabilizing. In
particular, Shahinfar, Sattarzadeh & Fransson (2014) demonstrated through experiments
that streaks generated in a laminar boundary layer by miniature vortex generators can
attenuate two-dimensional Tollmien–Schlichting and three-dimensional oblique waves and
completely prevent laminar–turbulent transition.

There is a limited amount of experimental evidence confirming the appearance of
streaky structures in submerged jet flows. Liepmann & Gharib (1992) demonstrated that in
a round jet subject to primary Kelvin–Helmholtz instability, longitudinal vortex structures
were formed in the narrowing regions. Although the authors suggested that the formation
of these structures was the result of a secondary instability of the flow, Nastro et al. (2020)
theoretically showed that these structures probably occurred due to the non-modal growth
of disturbances initiated by the natural turbulence of the jet. Kozlov et al. (2002) studied
the turbulization of a round jet, where the formation of longitudinal vortex structures was
detected by a flow visualization. It was shown that stationary structures of a similar nature
can be created by placing sandpaper in the nozzle. The authors made an assumption that
the interaction of Kelvin–Helmholtz vortices and longitudinal vortex structures would
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lead to a new type of transition in a round jet, in which the vortex rings are distorted
by longitudinal stationary perturbations, leading to the creation of new vortices, whose
secondary destruction yields jet turbulence. However, so far this mechanism has not been
confirmed by measurements.

1.3. The goal of this work
As can be seen from the literature review, despite the theoretical predictions of non-modal
growth in submerged jets, so far there have not been any experiments in which this
mechanism has been definitely identified. The role of non-modal growth in the transition
to turbulence in jets is also still unclear. The purpose of this work is to eliminate these
gaps with the help of the long laminar jet created by the set-up previously used by Zayko
et al. (2018) and Gareev et al. (2022).

In § 2, the experimental set-up and the profile of the considered laminar jet are briefly
described. In § 3, a theoretical analysis of the non-modal spatial instability is conducted.
Section 4 discusses the scheme of the experiments and the measurement system. Section 5
describes the results of the experiments. Section 6 discusses the correspondence between
the experimental data and the theory and § 7 summarizes the results of this work.

2. The laminar jet

In this study, we consider a laminar jet flow, which is formed by a device that consists
of three parts (figure 1). The first part is a perforated plate that smooths out the stream
incoming from the air pipeline (the diameter of the inlet cross-section of the device is
0.04 m). The second part is a bushing with two metal grids, which reduces the level of
turbulence down to 0.1 %. The third part is a diffuser, which expands the flow to a diameter
D = 0.12 m. It has two thin metal grids at the outlet to prevent flow separation. The set-up
is described in detail by Zayko et al. (2018).

There is an optimal range of Reynolds numbers for the considered flow, in which the
length of the laminar region is maximal (≥5D) so that it is possible to track the evolution of
introduced perturbations at long distances from the orifice. In this study, one regime from
this range is selected, in which the air flow has velocity at the jet axis Uc = 1.5 m s−1 and
average velocity Uavg = 0.66 m s−1, which corresponds to the Reynolds number based
on the average velocity and diameter ReD = 5400, and to the Reynolds number based on
the maximum velocity and jet radius Re = 6122. The experimental velocity profile at the
orifice is approximated by a cubic spline for theoretical study (figure 2). The downstream
evolution of the unperturbed jet profile is weak (Gareev et al. 2022) and is not taken into
account in the theoretical analysis.

3. Theoretical analysis of spatial non-modal instability

3.1. Method of optimal disturbances calculation
The idea of spatial optimal perturbations is to find such a perturbation that will lead to the
greatest increase in the kinetic energy of a perturbation for a given axial coordinate z and
frequency. The study of the optimal perturbations begins with the search for eigenmodes of
the jet velocity profile. The velocity components and pressure, with small perturbations,
are substituted into the dimensionless equations of motion of a viscous, incompressible
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1
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1 32

Figure 1. Jet-forming device: perforated plate (1), bushing with two different types of grids (2), diffuser with
grid package at the orifice (3).

1.0
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0 0.2 0.4 0.6 0.8 1.0

U/Uc

2r/D
Figure 2. The jet velocity profile. The crosses show the experimental values obtained by the hot-wire
anemometer. The solid line shows the profile used in theoretical analysis. The yellow rectangle indicates the
deflector at the radial position 2r/D = 0.5 in the flow.

fluid:

ut + (u · ∇)u = −∇p + 1
Re

∇2u,

∇ · u = 0,

}
(3.1)

where u is the fluid velocity vector, p is the pressure and Re is the Reynolds number
based on the maximum jet speed and the orifice radius. The subscript t denotes the
derivative with respect to the time t. After linearization with respect to perturbations,
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u = U + u′, p = P + p′, ‖u′‖/‖U‖ 
 1, we get

u′
t + (U · ∇)u′ + (u′ · ∇)U = −∇p′ + 1

Re
∇2u′,

∇ · u′ = 0,

}
(3.2)

where u′ is the fluid velocity perturbation, p′ is the pressure perturbation and U = U(r)ez
is the base flow velocity field.

Following Khorrami, Malik & Ash (1989), perturbations are considered in the form of
the eigenmodes in cylindrical coordinates (r, θ, z):

u′ =
⎡
⎣u

v

w

⎤
⎦ (r, θ, z, t) = ei(αz+nθ−ωt)

⎡
⎣iF

G
H

⎤
⎦ (r),

p′ = p(r, θ, z, t) = ei(αz+nθ−ωt)P(r),

⎫⎪⎪⎬
⎪⎪⎭ (3.3)

where α is the axial wavenumber, n is the azimuthal wavenumber and ω is the frequency.
Given a real frequency ω and an integer azimuthal wavenumber n, the eigenvalue

problem with respect to the axial wavenumber α is solved using the Chebyshev spectral
collocation method. First, we substitute (3.3) into (3.2) to obtain the ordinary differential
eigenvalue problem:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂r
+ 1

r
n
r

0 0 0 0 0

Δ −2n
r2 0 i Re

∂

∂r
0 0 0

−2n
r2 Δ 0 − i Re n

r
0 0 0

−i Re
dU
dr

0 Δz 0 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
G
H
P
αF
αG
αH

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= α

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 0
i ReU 0 0 0 1 0 0

0 i ReU 0 0 0 1 0
0 0 i ReU i Re 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
G
H
P
αF
αG
αH

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.4)

where

Δ = ∂2

∂r2 + 1
r

∂

∂r
+ i Reω − n2 + 1

r2 , Δz = ∂2

∂r2 + 1
r

∂

∂r
+ iReω − n2

r2 . (3.5a,b)

In (3.4), we increased the number of independent variables by adding αF, αG, αH in order
to transform the system to a linear one in α. The system (3.4) is supplied with the following
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boundary conditions. As r → +∞, we require the decay of perturbations:

F(+∞) = G(+∞) = H(+∞) = P(+∞) = αF(+∞) = αG(+∞) = αH(+∞) = 0.

(3.6)
At r = 0, we require

if n = 0 :

⎧⎨
⎩

F(0) = G(0) = αF(0) = αG(0) = 0,
∂H
∂r

(0) = ∂αH
∂r

(0) = 0,
∂P
∂r

= 0;

if |n| = 1 :

⎧⎪⎪⎨
⎪⎪⎩

H(0) = P(0) = αH(0) = 0,

F(0) + G(0) = 0, αF(0) + αG(0) = 0,

2
∂F
∂r

(0) + ∂G
∂r

(0) = 0, 2
∂αF
∂r

(0) + ∂αG
∂r

(0) = 0;
if |n| ≥ 2 : F(0) = G(0) = H(0) = P(0) = αF(0) = αG(0) = αH(0) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.7)

Second, we discretize the differential eigenvalue problem using the Chebyshev collocation
method. The infinite domain is reduced to 0 ≤ r ≤ Rout, where Rout is sufficiently large,
and the boundary conditions (3.6) are set at r = Rout. After the Gauss–Lobatto grid is
mapped upon the physical domain, we calculate the so-called Chebyshev differentiation
matrix. For the computational domain (−1, 1), the Chebyshev differentiation matrix of
size M has the following elements (Canuto et al. 2007):

(DM)jl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̄j

c̄l

(−1) j+l

xj − xl
, j /= l,

− xl

2(1 − x2
l )

, 1 ≤ j = l ≤ M − 2,

2(M − 1)2 + 1
6

, j = l = 0,

−2(M − 1)2 + 1
6

, j = l = M − 1,

(3.8)

where xj = cos(πj/(M − 1)) for j = 0, . . . , M − 1 and c̄j = 2 for j = 0, M − 1 and c̄j = 1
otherwise. For an arbitrary interval, the Chebyshev differentiation matrix can be calculated
using the chain rule and (3.8). After that, we replace ∂/∂r with it in (3.4). Finally, we
apply the boundary conditions (3.6), (3.7) and obtain the algebraic eigenvalue problem.
More details of the Chebyshev collocation technique are presented in Trefethen (2000)
and Canuto et al. (2007). The choice of Rout and the grid size was based on a spectrum
convergence study for each n and ω.

Thus, a set of eigenvalues and corresponding eigenvectors {αj, qj} is found in the
viscous linear formulation for the considered velocity profile. They include truly discrete
eigenvalues, as well as a discretized continuous spectrum. An arbitrary perturbation can
be represented as an expansion in eigenmodes:

q(r, θ, z, t) =
N∑

j=1

γjqj(r) ei(αjz+nθ−ωt), (3.9)

where q = (u, v, w, p) is the state vector of the system, αj and qj = (iF, G, H, P) are the
jth eigenvalue and the corresponding eigenvector, respectively, and N is the number of
eigenmodes used in the calculations.
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Figure 3. Loci of eigenvalues in the complex α plane with increase of Im ω for Re ω = 0.01, n = 1. Dashed
arrows show the motion of downstream-travelling damped modes, and the continuous arrow represents the
downstream-travelling amplified mode. Red curve separates downstream- and upstream-travelling modes.

Disturbances with Im α < 0 are travelling upstream of the disturbance generator and
are not included in this expansion, with the exception of discrete instability modes
travelling downstream. There are zero, one or two instability modes for the considered
velocity profile, depending on ω and n (Gareev et al. 2022). To distinguish amplified
downstream modes from decaying upstream modes (both have Im α < 0 for ω ∈ R), the
following method was used. Due to the causality principle, as Im ω → +∞, all modes
were unambiguously split into upstream (Im α < 0) and downstream (Im α > 0) travelling
waves. For a fixed value of Re ω, we increased the value of Im ω from zero to Im ω > 0
and observed the motion of eigenvalues on the complex α plane, as shown in figure 3.
While increasing Im ω, we selected eigenvalues α moving to the upper half-plane and
consequently representing truly downstream-travelling waves. As intuitively expected,
only instability modes associated with the inflection point of the velocity profile (Gareev
et al. 2022), initially located at Im α < 0, moved to the upper half-plane and, hence, were
included into the expansion (3.9). In calculations, we assume that the eigenmodes are
sorted in ascending order of Im α and choose the first N modes for the expansion (3.9).

As a functional norm for which the optimization problem is solved, we consider the
kinetic energy of perturbation:

E(z) = 1
4πT

∫ ∞

0

∫ T

0

∫ 2π

0
((Re u)2 + (Re v)2 + (Re w)2)r dθ dt dr, T = 2π

ω
. (3.10)

For stationary perturbations, we analyse the limit of ω → 0. To normalize initial kinetic
energy of perturbations, we assume that E(0) = 1.

After substituting (3.9) into (3.10), the kinetic energy of the perturbation (3.9) is
expressed as a quadratic function of the expansion coefficients:

E(z; γ ) =
N∑

j,k=1

γ ∗
j Ejkγk = γ †E(z)γ , (3.11)
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where ∗ represents complex conjugation, † is the Hermitian conjugation operator, γ is the
column vector of coefficients of the expansion (3.9) and the components of the matrix
E(z) are as follows:

Eij = 1
4 exp((−iα∗

i + iαj)z)
∫ ∞

0
(F∗

i Fj + G∗
i Gj + H∗

i Hj)r dr. (3.12)

Thus, the problem of optimal perturbations is reduced to the problem of constrained
optimization (Boronin et al. 2013):

γ †E(z)γ → max, subject to γ †E(0)γ = 1. (3.13)

The problem (3.13), in its turn, is reduced to the generalized Hermitian eigenvalue problem

E(z)γ = σE(0)γ , (3.14)

with its largest eigenvalue σmax being exactly the optimal energy value E(z) for a given z.
The value of σmax is found by the power iteration algorithm.

Summarizing, the algorithm for the calculation of the optimal perturbation for a given z
is as follows. After the calculation of the eigenvalues αj and corresponding eigenvectors,
we select those corresponding to downstream-travelling modes. Next, we calculate the
matrices E(z) and E(0) and find the largest eigenvalue of the problem (3.14), which is
the optimal perturbation energy. The corresponding eigenvector γ is used to calculate the
initial and final spatial distributions (3.9) of the optimal perturbation. For every n and ω,
we performed the convergence study in the number of downstream-travelling eigenmodes
N used in the expansion (3.9). Here N was changed from 200 to 1500 to check the
convergence.

3.2. Calculation results
Boronin et al. (2013) showed that for several types of jet velocity profiles, stationary
perturbations (that is, perturbations with ω → 0) demonstrate the largest non-modal
growth. The same effect was obtained for the profile under consideration. Examples are
shown in figures 4 and 5, where the ratio of the maximum relative kinetic energy G of all
perturbations,

G(z) = max
E(z)
E(0)

, (3.15)

to the energy of the fastest-growing eigenmode (denoted as Em in figures 4 and 5) reaches
its maximum as ω → 0. Therefore, in what follows, we restrict ourselves to the stationary
optimal perturbations.

Note that in our study we consider steady perturbations, i.e. ω → 0. It is known that
for ω = 0, all eigenmodes of the linearized Navier–Stokes equations are either damped or
neutral (it was also checked for our jet velocity profile). Consequently, the perturbation
growth a priori cannot be generated by a single mode, and in this sense it is ‘non-modal’
by definition. Hence, the growth of a steady perturbation downstream can only be
explained by a limited growth of a combination of damped modes. Such a combination
can indeed grow due to non-self-adjointness of the linearized Navier–Stokes operator, and
non-orthogonality of its eigenvectors (see Schmid & Henningson (2001) for details).

Figure 6 shows G(z) for various azimuthal wavenumbers. Each curve in figure 6 depicts
the envelope of the family of curves for the relative kinetic energy of all possible stationary
perturbations for a given n. It can be seen that, for small values of z, perturbations with
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Figure 4. The ratio of the optimal perturbation energy to the energy of the fastest-growing eigenmode for
various frequencies for n = 1: (a) z/D ≤ 5; (b) z/D � 1.
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Figure 5. The ratio of the optimal perturbation energy to the energy of the fastest-growing eigenmode for
various frequencies for n = 5: (a) z/D ≤ 5; (b) z/D � 1.

different n grow at similar rates, but as z increases, smaller n corresponds to larger
perturbation growth. For classical velocity profiles, non-modal growth of axisymmetric
perturbations, n = 0, due to the Orr mechanism, is significantly weaker than for n �= 0,
where the ‘lift-up’ mechanism is active (Jiménez-González et al. 2015). The same result is
obtained for our velocity profile: for axisymmetric perturbations n = 0, the optimal energy
gain G is less than 81 for all z.

Since the unperturbed profile is axisymmetric, for each n /= 0 there is a helical solution
twisted counterclockwise, and a similar solution twisted in the opposite direction for −n.
To get the optimal solution without twist, we average two helical perturbations:

q̃n(r, θ, z) = qn(r, θ, z) + q−n(r, θ, z)
2

, (3.16)
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Figure 6. Energy growth of stationary optimal perturbations for various azimuthal numbers n: (a) z/D ≤ 5;
(b) z/D � 1.

where qn is the optimal perturbation for a given n and ω → 0. Three optimal perturbations,
two with twist in opposite directions and one without twist, have the same optimal energy
gains G(z).

Visualizations of the untwisted optimal perturbations for z, where G(z) reaches its
maximum, are shown in figure 7, where the axial velocity perturbation is shown in colour,
the streamlines are drawn for transverse velocities and the white circle is the unperturbed
jet boundary.

As can be seen, the cases n = 1 and n > 1 differ in their spatial structure. In the case of
n = 1, the optimal perturbation takes the form of a displacement mode whose effect is to
shift the jet. This is called the ‘shift-up’ effect by Jiménez-González et al. (2015). Due to
the transfer of faster zone from the jet core to the shear layer, this shift leads to an increase
and decrease in the axial velocity in two opposite shear regions. In the case of n > 1,
the optimal perturbation consists of several vortex structures (the number of which is 2n)
that form ‘petals’ of jet acceleration and deceleration due to the replacement of fast zones
by slow ones and vice versa. This structure resembles the ‘lift-up’ effect in the boundary
layer.

An example of axial and transverse perturbation velocities for n = 2, which are optimal
in some section, is shown in figure 8 as a function of the axial coordinate z/D at
2r/D = 0.75 (qualitatively similar distributions are observed in other points for all n > 0).
It can be seen that the axial velocity perturbation increases almost linearly up to z/D ≈ 4
and just slightly deviates from the linear trend for z/D > 4, while the two other velocity
components almost do not change. These properties, the linear growth of the axial velocity
perturbations with the preservation of longitudinal vortices, are characteristic of the
non-modal ‘lift-up’ mechanism of the perturbation growth. As the axial velocity initially
evolves almost linearly, and it is the dominant component of the kinetic energy of optimal
perturbations, E(z) grows almost quadratically with the increase of z.

Like the jet flows considered by Boronin et al. (2013) and Jiménez-González
& Brancher (2017), the optimal perturbations for the considered profile have a
complex three-dimensional structure and, accordingly, are difficult to implement in
experiments. Nevertheless, in this experimental work, by using special deflectors, we
create perturbations that are qualitatively close to the theoretical optimal ones.
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Figure 7. Distribution of the axial component of the optimal perturbation velocity and streamlines in the
jet cross-section for (a) n = 1, (b) n = 2, (c) n = 3 and (d) n = 5. The coordinate z corresponds to the
cross-section, in which the global energy maximum is reached: z/D = 1015 for n = 1, z/D = 81 for n =
2, z/D = 35 for n = 3 and z/D = 12 for n = 5.

4. Experimental set-up and measurement system

4.1. Creation of disturbances
As described above, stationary perturbations have larger non-modal growth than
non-stationary ones. That is why disturbances were introduced into the jet using
motionless thin wave-like structures, which we call deflectors (figure 9).

The upper edge of the deflectors was a circle of radius r0 = d0/2 (=30 mm in most
of the experiments), and the lower edge is a perturbed circle with a given azimuthal
wavenumber n and radius r = r0(1 + ε sin(nθ)), where ε defined the dimensionless
amplitude of deviation from the circle and θ was a polar angle. The height of the deflector
between the upper and lower edges is h = 10 mm while the wall thickness was 0.6 mm.
A smooth transition was made between the edges (points of the upper and lower edges with
the same azimuthal coordinate θ were connected by straight-line segments). The models
were designed in a computer-aided design program and then three-dimensionally printed
from polylactic acid plastic.

A special holder was designed for the deflector installation inside the jet. This holder was
attached to the diffuser like a crimp ring and allowed us to vary the distance between the
orifice of the diffuser and the plane where the deflector was located, as well as the rotation
angle of the deflector around the jet axis. The lower edge of the deflectors lay on strained
fishing lines of 0.05 mm in diameter. The deflectors were installed inside the jet coaxially,
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Figure 8. Root mean square of the velocity component fluctuations of the optimal perturbation as ω → 0 for
n = 2 at 2r/D = 0.75.

(b)

(a)

Figure 9. Three-dimensional model (left) and printed deflector (right) with azimuthal wavenumbers n = 3
(a) and n = 5 (b), with parameters ε = 0.1, d0 = 60 mm.

with the inlet edge at a distance of z = 20 mm, i.e. at z/D = 1/6 (hereinafter, z denotes
the distance from the diffuser orifice), and the undisturbed inlet circle edge upwards. A
photograph of the holder with the deflector installed is shown in figure 10.
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Figure 10. Picture of the deflector holder.
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Figure 11. Flow visualization scheme in longitudinal (a) and transverse (b) planes. Diffuser (1), glycerin
aerosol generator (2), laser sheet (3), laser (4), video camera (5), holder with deflector (6).

4.2. Flow visualization method
Flow visualization (figure 11) was performed using the laser sheet method. Fine glycerol
particles (of diameter 1–3 μm) were introduced to the pipeline before the jet-forming
device. A continuous green laser with a wavelength of 532 nm, equipped with a cylindrical
lens to create a plane, illuminated the cross or longitudinal sections of the jet. Due
to eventual settling of glycerol particles on the bushing with grids (of a cell size of
30–50 μm), the bushing was regularly washed with water to maintain the characteristics
of the jet. The video camera was located outside the flow and was mounted on a vertical
traverse system together with the laser. Accordingly, it moved synchronously with the
illuminated cross-section of the jet to ensure the same frame scale for each shooting
distance. All frames of the cross-section at distances z/D = 0.5–3.5 were obtained at an
angle to the jet axis, so that a linear transformation of the frame plane was subsequently
performed to eliminate its distortion.
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Figure 12. Scheme for measuring the flow velocity with a hot-wire anemometer.

4.3. Hot-wire anemometer measurements
Measurement of the instantaneous and averaged flow velocity was conducted using a
hot-wire anemometer (DISA CTA BRIDGE 56C17). The hot-wire anemometer probe with
5 μm tungsten wire was located at the end of the L-shaped holder (figure 12), whose
movement in the transverse and axial directions of the jet flow was controlled from a PC.
The signal was digitized by an analogue-to-digital converter at a frequency of 7500 Hz,
which provided a fairly wide spectrum of velocity disturbances and negligible random
measurement errors. A systematic absolute error of velocity measurements due to the
calibration procedure was nearly 0.015 m s−1, which corresponded to ∼1 % relative error
with respect to the maximum velocity of the base flow. Another source of errors was the
five-second averaging time period, which was sufficient to show a trend in the evolution
of disturbance, but could possibly have been sensitive to large-scale air motion in the test
room.

4.4. Particle image velocimetry measurements
The flow seeding method for particle image velocimetry (PIV) measurements was the
same as for the flow visualization. The flow was illuminated with a Beamtech Vlite-Hi-100
high-frequency pulsed Nd:YAG laser mounted on a traverse system. A rod with an Allied
Vision Bonito CL-400B high-speed PIV camera was also attached to the traverse system.
When the cross-section was measured, the camera was placed directly into the jet at
a distance of 720 mm (Δz/D = 6) below the measured cross-section (figure 13). The
camera installation scheme for measuring the longitudinal section is similar to that used
for visualization (figure 11a). As the flow velocity in the regime under study did not exceed
1.5 m s−1, and the delay between two flashes of the pulsed laser did not exceed 750 μs,
it was possible to detect the motion of particles in the transverse plane of the laser sheet
(thickness not less than 0.001 m). This design allowed shooting at distances z/D = 1–2.
Shooting double frames was performed mainly at a frequency of 20 Hz.

Photo processing was performed using ActualFlow software and consisted of applying
an iterative cross-correlation algorithm to find velocities in the 64 × 64 pixel areas with
50 % overlap and subsequent filtering of the vectors by the signal-to-noise ratio, as well
as by the magnitude of the components of the instantaneous velocity vectors. We did not
seed the air surrounding the jet. Because of this, in the right-hand part of the velocity field
patterns outside the jet, we could detect a parasitic high-velocity flow region remaining
after filtration, which was explained by the camera noise (see figure 14a).
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Figure 13. Scheme of PIV experiments (cross-section of the jet). Diffuser (1), glycerine aerosol generator
(2), laser sheet (3), high-frequency pulsed laser (4), high-speed camera (5), holder with deflector (6), traverse
system (7).
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Figure 14. Velocity fields of the undisturbed flow obtained using PIV: (a) flow in the cross-section of the jet;
(b) flow in a longitudinal section.

The average velocity field was found by averaging 3000 instantaneous velocity fields,
so the random error was negligible. The systematic error came from the error of the
cross-correlation algorithm, which could be estimated as ∼1 %. An example of the
obtained transverse velocity modulus field in a jet is given for an undisturbed flow in
figure 14(a) and for the axial velocity field in figure 14(b).

Each experiment consisted of putting a deflector into the flow and measuring the average
axial velocity in the central plane of the jet, or the average transverse velocity at distances
from the forming device orifice z/D = 1, 1.25, 1.5, 1.75, 2. These fields can be used to
estimate the evolution of the flow disturbance downstream. In what follows, for brevity,
flow patterns for z/D = 1, 1.5, 2 are given.

5. Experimental results

5.1. Visualization of the cross-section of the jet
To study the development of perturbations introduced by deflectors with ε = 0.1,
experiments were conducted with the visualization of the cross-sections of the jet by a
laser sheet.
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Figure 15. Three-dimensional models of deflectors with azimuthal numbers n = 3, 4, 5 (a) and the evolution
of stationary perturbations introduced by them as cross-section photographs (b) and the qualitative scheme (c).

Disturbances introduced by deflectors with initial diameter d0 = 60 mm (d0 = D/2)
developed faster and turbulized the flow earlier upstream compared with disturbances
introduced by deflectors with d0 = 30, 90, 120 mm. This can possibly be explained by
a rather large unperturbed velocity at r = 30 mm (2r/D = 1/2) and its large gradient
(figure 2). Deflector configurations with larger or smaller d0 introduce disturbances either
where the velocity gradients are smaller or where the flow velocity is significantly less
than the velocity at the jet centre.

Disturbances caused by deflectors at small distances almost do not deform the
cross-section, but the cross-section changes with the development of the stationary
disturbance downstream, acquiring the shape of the outlet edge of the deflectors
(figure 15). ‘Petals’ increase, stretch in the radial direction from the jet axis and form a
‘neck’ – a narrow region of the jet section connecting the petal with the jet core. Shortly
after the formation of necks, a rapid growth of unsteady fluctuations and transition to
turbulence at distances z/D ∼3 are observed. A qualitative scheme for the development of
such perturbations is shown in figure 15.

Petal lengths versus the distance z were obtained from the cross-section pictures of the
jet for deflectors with n = 3, 4, 5, and the resulting plots are shown in figure 16. Since one
photograph of the instantaneous jet cross-section is analysed for each streamwise position,
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Figure 16. (a) Measurement of the petal length in the jet cross-section perturbed by deflector with n = 5, ε =
0.1 at z = 1.5D. (b) The petal length as a function of z/D. Perturbations with n = 3 (grey squares), n = 4
(green circles), n = 5 (black diamonds).
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Figure 17. Normalized axial velocity perturbation versus the distance z downstream. Perturbations are
introduced by a deflector with ε = 0.05. Measurements in petals at 2r/D = 0.8 (a) and troughs at 2r/D =
0.55 (b). Perturbations with n = 3 (grey squares), n = 4 (green circles), n = 5 (black diamonds).

we estimate the uncertainty of this method (due to random fluctuations of the jet and
air motion in the test room) as < 5 %, which is acceptable to characterize the evolution
of the perturbed jet. The lengthening of the petals occurs linearly; therefore, the radial
velocity perturbation is approximately constant, which is consistent with the theoretical
calculations of stationary optimal perturbations of the jet (§ 3.2).

5.2. Development of the axial velocity component
To make sure that the development of perturbations introduced by the deflectors
qualitatively corresponds to the development of optimal perturbations, we considered the
change in the axial flow velocity downstream. A series of experiments was performed to
determine the average velocity with a hot-wire probe outside the flow core with deflectors
for n = 3, 4, 5 and ε = 0.05 (figure 17) and ε = 0.1 (figure 18). Points with constant radial
and azimuthal coordinates were selected outside of the deflector wake.

In figures 17 and 18, the relative amplitudes of stationary disturbances versus z/D
are given at the points corresponding to petals of the jet section (left-hand panels)
and corresponding to ‘troughs’ (right-hand panels). It is seen that in regions of
contraction and expansion of the cross-section, the axial velocity evolves algebraically
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Figure 18. Normalized axial velocity perturbation versus the distance z downstream. Perturbations are
introduced by a deflector with ε = 0.1. Measurements in petals at 2r/D = 0.8 (a) and troughs at 2r/D =
0.55 (b). Perturbations with n = 3 (grey squares), n = 4 (green circles), n = 5 (black diamonds).
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Figure 19. Transverse velocity (a,b) and vorticity (c,d) with plotted streamlines for perturbation with
n = 1, z/D = 1 and ε = 0.05 (a,c) or 0.1 (b,d). The grey dashed circle is the unperturbed jet boundary, orange
dash-dotted circle is the deflector inlet, white solid circle is its outlet.

and close-to-linearly with streamwise distance. The significant deviation from the linear
growth appears only for deflectors with ε = 0.1 in petals of the jet at z/D > 2.0. The
velocity, reaching its peak at z/D ≈ 2.0, decreases, which is explained by the growth of
nonlinear effects that arise when a sufficiently large perturbation amplitude is reached;
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Figure 20. Transverse velocity (a,b) and vorticity (c,d) with plotted streamlines for perturbation with
n = 2, z/D = 1 and ε = 0.05 (a,c) or 0.1 (b,d). The legend is the same as in figure 19. White solid curve
is a perturbed circle (deflector outlet).

namely, by the formation of necks. Close-to-linear growth of the axial velocity is in
accordance with the development of theoretical optimal perturbations (§ 3.2).

5.3. Particle image velocimetry experiments
This section presents the results of PIV measurements in the transverse and longitudinal
cut planes of the jet. Below, we show averaged perturbation fields, i.e. the disturbed
flow minus the base flow. The streamlines of the transverse disturbance velocity are
superimposed on the colour fields of the transverse disturbance velocity or vorticity
magnitude. Flow patterns in transverse sections demonstrate the qualitative nature of the
disturbance, and are given in dimensional quantities: m s−1 and s−1 for velocity and
vorticity, respectively.

5.3.1. Flow in the transverse jet plane at n = 1 . . . 5
Case of n = 1. Figure 19 shows flow patterns with plotted streamlines for perturbation
with n = 1, taken at z/D = 1. Figure 19(a,b) shows the transverse velocity (colour denotes
the velocity modulus) and figure 19(c,d) the values of the longitudinal vorticity component
ωz. The thicker parts of the streamlines correspond to a larger modulus of transverse
velocity. The large grey dashed ring has a diameter of 120 mm and corresponds to the
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Figure 21. Transverse velocity (a,b) and vorticity (c,d) with plotted streamlines for perturbation with
n = 3, z/D = 1 and ε = 0.05 (a,c) or 0.1 (b,d). The legend is the same as in figure 19.

boundary of the undisturbed jet and the small white curve corresponds to the location of
the deflector outlet with real magnitude of ε. Figure 19(a,c) corresponds to a smaller flow
disturbance caused by a deflector with ε = 0.05 and figure 19(b,d) corresponds to the case
ε = 0.1. These deflectors shift the flow apart from the jet axis (for n = 1, the deflector
inlet as a dash-dotted circle is shown too), but the appearance of several regions with
high vorticity should also be noted. At ε = 0.05, two symmetrically located and clearly
distinguishable regions with opposite vorticities are observed; at ε = 0.1, the number
of vorticity zones increases, they become larger and the maximum values of vorticity
increase.

Case of n = 2. The outlet cross-section for the deflector with n = 2 is characterized
by two minima and two maxima, which are also reflected in the disturbance patterns
(figure 20). In the directions of the maximum radii of the deflector, there is a flow from
the axis to the periphery. For the radius minima, the opposite flow towards the axis is
seen. Vortices are observed between these regions, which can be easily detected by the
vorticity maxima in figure 20(c,d). For ε = 0.1, the distribution of the modulus of velocity
and vorticity is more complicated than for ε = 0.05, which is probably explained by the
appearance of nonlinear effects in the flow. That is, between the main zones of vorticity,
additional vortex pairs arise in the directions of both deflector ‘maximum’ and ‘minimum’.
As ε increases from 0.05 to 0.1, the perturbation shrinks in the ‘minima’ direction, where
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Figure 22. Perturbation evolution downstream for n = 5, ε = 0.05. The transverse velocity modulus
(a–c) and vorticity (d– f ) for (a,d) z/D = 1; (b,e) z/D = 1.5; (c, f ) z/D = 2.

the air flows towards the axis, and expands in the direction of the ‘maxima’, where the
fluid is ejected to the periphery.

Case of n = 3. For n = 3, the flow pattern (figure 21) is essentially similar to the
previous cases: each of the three perturbation petals produces two surrounding vortices,
which capture fluid in the region of the small axial velocity located on the periphery,
and transfer it towards the jet axis. They also transfer fluid from the region of high axial
velocity near the axis to the periphery. Passing from ε = 0.05 to ε = 0.1, the maximum
velocity and vorticity moduli increase, the flow in the petals becomes more complicated
and significantly inhomogeneous and additional vorticity zones appear.

Case of n ≥ 4. Further increasing of n gives the same flow patterns (figures 22 and
23 show an example of n = 5). There is a general tendency to change the angle of
inclination of the elongated vortex regions with an increase of ε: the vortex zones become
more intensive and more aligned to the radial direction. For ε = 0.1, the internal vortices
observed for n ≤ 3 disappear, and only one pair of counter-rotating vortices is noticeable
in each petal.

5.3.2. The disturbance evolution
Let us trace the change in the downstream flow pattern using n = 5 as an example
(in other cases, the pattern evolution is qualitatively similar). Figure 22 shows the
perturbation patterns for z/D = 1, 1.5, 2 and ε = 0.05. The perturbation undergoes a
certain deformation, but the flow structure does not change. The zones of increased
velocity gradually shift radially outward, i.e. to the zone of lower velocities of the base
flow. The vortices separating the petals gradually weaken, and the modulus of maximum
vorticity decreases. Similar observations can be made for ε = 0.1 (figure 23), where
these features are more clearly visible due to the greater intensity of flow disturbance.
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Figure 23. Perturbation evolution downstream for n = 5, ε = 0.1. The transverse velocity modulus (a–c) and
vorticity (d– f ) for (a,d) z/D = 1; (b,e) z/D = 1.5; (c, f ) z/D = 2.

For ε = 0.05, the shape of the petals changes mainly due to their expansion in the radial
direction, while in the azimuthal direction they narrow slightly. At ε = 0.1, the petals are
more reminiscent of plumes, and the eddies enclosing them also generate a noticeable
azimuthal velocity in this region, leading to a petal expansion with increasing z.

5.3.3. Measurements in the longitudinal plane
The measurements described in the previous section show how the transverse velocity
and vorticity evolve, but do not provide information about the axial component of the
disturbance. To obtain the corresponding velocity fields, a series of experiments was
performed, in which the laser sheet passed through the jet axis and the camera obtained
flow patterns in the meridional plane.

Due to their symmetries, deflectors give a different number of characteristic planes in
which measurements should be made to study the flow patterns. For odd n = 1, 3, 5, . . . ,

when a plane passes through an antinode, there will also be an antinode of the opposite
kind (maximum–minimum and vice versa), and it is enough to make one measurement
in order to investigate the development of a petal of the disturbance. For even n =
2, 4, . . ., there are planes of symmetry passing through antinodes of the same type
(maximum–maximum, minimum–minimum), so that in this case, measurements in two
planes are made.

Below, as an example, longitudinal perturbation patterns with n = 2 and 3 for ε = 0.1
are given. For convenience, the axis perpendicular to the z axis in the cut plane is denoted
by x.

Figure 24 shows two perturbation velocity fields obtained in the maximum–maximum
(figure 24a) and minimum–minimum (figure 24b) planes for n = 2. The arrows show the
perturbation velocity vectors, and the colour fill corresponds to its axial component uz
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Figure 24. Perturbation for n = 2, ε = 0.1 in the longitudinal plane maximum–maximum (a) and
minimum–minimum (b). The fill shows the uz component related to the maximum base flow velocity Uc.
In the zone with x/D > 0.6 and z/D < 1.33, spurious vectors have been masked.

normalized by the maximum value of the base flow axial velocity Uc. In figure 24(a), the
jet expands, and the axial component of the velocity increases downstream. A small reverse
perturbation velocity arises in the flow core. In the minimum–minimum plane (figure 24b),
the flow pattern is different: the perturbed flow is displaced towards the jet axis and slows
down, so that the perturbation has a velocity direction opposite to the base flow.

For n = 3 (figure 25), the disturbed flow deviates to the left relative to the axis of the
undisturbed flow. Hence, the region of the disturbance with the positive axial velocity
originated at the left-hand side of the jet flow (below the deflector’s maximum) and the
one with negative velocity at the right-hand side (below the deflector’s minimum). There
is a small zone near the jet axis in which the perturbation is almost absent compared with
its peripheral values. As z increases, the moduli of the perturbation velocity increase, and
the radial extent of the perturbation axial velocity is increasing.
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Figure 25. Perturbation for n = 3, ε = 0.1 in the longitudinal plane. In the zone with
x/D > 0.5 and z/D < 1.7, spurious vectors have been masked.

Let us consider how the kinetic energy changes downstream in the measurement plane
for various deflectors. We introduce the normalized kinetic energy

K(z) = 1
LU2

c

∫
L
(u2

z (x, z) + u2
x(x, z)) dx, (5.1)

where L is the horizontal length of the frame (note that due to the symmetry of
three-dimensional velocity fields with respect to these planes, the circumferential velocity
component uθ is negligibly small). Based on the measurements made for n = 1, 2, 3, 5
(figure 26), we can conclude that K(z) in these symmetry planes increases quadratically,
which corresponds to the theory (§ 3.2).

Let us analyse the evolution of individual components of the perturbation using the n =
3 deflector as an example. Figure 27(a) shows the transverse velocity component ux/Uc
versus z/D at points ‘under’ the deflector (x/D = ±0.25). A curve corresponding to the
minima in each cross-section is also shown, i.e.

u−
x (z) = min

x
ux(x, z). (5.2)

As the entire jet in this plane is displaced in one direction, ux(x, z) ≤ 0, therefore the
maximum transverse velocity u+

x (z) = 0 is reached outside the jet and is not shown in this
figure. Figure 27(b) shows the axial component uz(x, z), at the same points x/D = ±0.25,
as well as the maximum and minimum of uz in each cross-section:

u+
z (z) = max

x
uz(x, z), u−

z (z) = min
x

uz(x, z). (5.3a,b)

For a more convenient presentation in figure 27(b), the absolute values of negative
functions are given.

The transverse component ux varies slightly over the considered zone of space. One can
note a linear growth of uz at x/D = ±0.25 and of maximum and minimum values of uz;
the linear growth was also observed at almost every point x = const. Note that as there is
a non-zero transverse velocity component, the coordinate of the maximum amplitude of
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Figure 26. Change of
√

K(z)/K(D) for different deflectors. For n = 2, ‘max’ and ‘min’ correspond to
measurements in the maximum–maximum and minimum–minimum planes.
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Figure 27. Downstream evolution of the normalized transverse ux/Uc (a) and axial uz/Uc (b) disturbance
components for n = 3, ε = 0.1. The dashed line denotes negative values with the sign reversed for convenience
of presenting the data.

the perturbation is changing downstream. Therefore, when the perturbation amplitude is
measured at a fixed x, the rate of perturbation growth will be underestimated compared
with the true value (see uz and |u±

z | in figure 27b for comparison).

6. Comparison of experiment with theory

As was shown above, the evolution of introduced perturbation matches qualitative features
of theoretical optimal perturbations quite well. Namely, the following characteristic
features of the ‘lift-up’ growth mechanism have been confirmed. First, the transverse
velocity remains approximately constant downstream. Second, the axial velocity increases
downstream approximately linearly. Finally, the transverse motion has a ‘roller-like’
movement, transferring the outer layers of the fluid inward and the inner layers outward.
For example, figure 28 shows the transverse motion comparison of theoretical optimal
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Figure 28. Comparison of the cross-sectional flow fields of theoretically optimal perturbation (a) and of
the experiment at ε = 0.05 (b). Colour fill corresponds to transverse velocities of the disturbance for n = 3,
normalized by its maximum value.

perturbation (corresponding to figure 7c) and observation (figure 21a). It is seen that the
vortical structures are qualitatively similar: six vortices that transfer fast layers outside
and slow layers inside the jet. This motion causes a local increase in the axial velocity
perturbation, which is an analogue of the streaky structure in near-wall flows.

When it comes to quantitative comparison of the perturbation growth rate, there are two
difficulties with non-modal perturbations as compared with eigenmodes.

(i) First, it is quite hard, if not impossible, to generate experimentally a perturbation that
is close to theoretically optimal, because the optimal perturbation, in general, has a
complex three-dimensional initial velocity field. That is why in this study we did not
aim to generate the truly optimal perturbations, but aimed to produce perturbations
that were expected to have a similar non-modal growth mechanism: rolls evolving
into streaks. Hence, growth rates of generated perturbations can be essentially lower
than those of theoretically optimal ones, so that we can, at best, compare an order of
the growth rate.

(ii) Another difficulty is associated with the definition of the ‘growth rate’ in the
non-modal case. In the case of an exponentially developing eigenmode, v′(z) = Aeδz,
anemometer measurements of v′

exp(z) along a single line immediately yield the
growth rate δ as a slope of the curve ln v′

exp(z) in its linear part. In the case of
algebraic (linear) growth, we have

v′(z)/v′(z0) = 1 + κ(z − z0) ⇔ v′(z) = v′(z0) + v′(z0)κ(z − z0)

= v′(z0) + k(z − z0). (6.1)

At first glance, it is natural to consider the linear coefficient κ = k/v′(z0) =
(Δv′/Δz)/v′(z0) as the characteristic of the linear growth. However, such a
definition is not invariant with respect to the choice of the initial cross-section z0.
Indeed, as k is unchanged downstream for a particular perturbation, whereas the
velocity v′(z) grows, taking points from z1 > z0 and v′(z1) > v′(z0) as initial values
yields a decrease of the experimentally determined κ for the same perturbation. The
coefficient k is also inappropriate as a growth measure, since it is not invariant with
respect to amplitude of the initial value v′(z0).

The resolution of the second difficulty comes from the mechanism of non-modal
growth. Namely, cross-sectional roller-like motion (rolls) stays almost unchanged
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downstream, whereas the axial velocity grows approximately linearly. Clearly, taking
cross-sections located more downstream as initial conditions will increase the initial
energy E0 and, hence, will decrease the linear growth rate of

√
E(z)/E0. Consequently,

the ‘best’ growth will be attained if the initial cross-section is chosen such that the axial
velocity is close to zero, and the transverse velocity components (rolls) are dominating in
the initial velocity field.

This consideration yields two possible methods for extraction of the growth rate from
our experimental measurements. Consider PIV measurements at the longitudinal plane
shown in figures 24 and 25. As shown in figure 27(b), its axial velocity varies almost
linearly. In the first method, we continue this plot upstream as a linear function and
determine the position z0 at which the axial velocity is close to zero. This location z0
is considered as initial, where the perturbation is the ‘closest’ to the optimal, because its
initial energy mostly consists of the transverse motion (note that z0 can lie upstream of the
deflector, i.e. it is a fictional initial position). The fictional initial energy of the perturbation
is calculated as

Kx(z) = 1
LU2

c

∫
L

u2
x(x, z) dx. (6.2)

It is supposed that Kx(z) does not depend on z for a pure ‘lift-up’ mechanism, and the
integration line can be chosen at any location z. Also, we suppose that in the point z = z0,
the kinetic energy of rolls makes the most contribution to the perturbation kinetic energy,
i.e. we assume that extrapolation of linear function

√
K(z) to the point z = z0 should yield

K(z0) ≈ Kx(z). After that, the experimental dimensionless growth coefficient κ is found
from the linear relation √

K(z)
Kx

= 1 + κ
z − z0

D
. (6.3)

In further calculations, we used Kx = Kx(D) and z = z1 = 2D. The experimentally
obtained value κ is then compared with the theoretical linear growth coefficient of√

E(z)/E(0) for the optimal perturbation.
This method is theoretically correct for the growth coefficient extraction for a truly

optimal perturbation. For our perturbation and for our apparatus, there is an uncertainty in
determination of z0. Namely, considering n = 3 as an example, z0 found from u−

z (z) and
u+

z (z) plots of figure 27 are z−
0 /D ≈ −1.04 and z+

0 /D ≈ 0.13, respectively. Although these
values are different, z1 − z0 have the same order, which is sufficient for the extraction of
the order of the growth coefficient from (6.3). The estimations of κ from the method are
shown in figure 29: filled squares correspond to the case when u−

z was used to obtain z0,
and empty squares relate to determination of z0 as zero of u+

z .
The second method is based on direct assumption of the distribution (6.3). Minimum

(Kx,min) and maximum (Kx,max) values of Kx(z) from the range 1 ≤ z/D ≤ 2 can be taken
as Kx to show a possible scatter in determination of κ. Then, κ and z0 can be found from
the least-squares method for linear interpolation of the functions

Fmin(z) =
√

K(z)
Kx,min

− 1, Fmax(z) =
√

K(z)
Kx,max

− 1. (6.4a,b)

The experiments show that functions (6.4a,b) are quite linear, and corresponding
estimations of κ are shown in figure 29. Due to Kx,min ≤ Kx,max, the magnitudes of
κ found from Fmin are larger than those found from Fmax. All obtained κ lie in the
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Figure 29. Growth coefficient κ found by two different methods. In the first method (1, 2), the minimum and
maximum of uz were used, respectively, to estimate z0 (see (6.3)). Points (3, 4) relate to the second method for
Fmin(z) and Fmax(z), in which the minimum and maximum of Kx were used from (6.4a,b), respectively. Cases
with different ε are combined and not distinguished.

range κ ∼ 1–5, while theoretical calculations of optimal perturbations (figure 6) give
κ ∼ 30, which is one order of magnitude larger than that obtained in the experiments.
This difference, however, is not surprising due to remark (i): our perturbations are not
optimal (only partially reproducing their structure), but still grow according to the same
growth mechanism.

Among other available theoretical data, let us note the similarity of the nonlinear
evolution of our perturbations to the theoretical study of Wang et al. (2021). Namely, their
figures 2(a–d), demonstrating the nonlinear evolution of optimally perturbed jet, is similar
to our observations shown in figure 15: there are clearly distinguishable necks occurring
during the evolution of petals. We then may suppose that this kind of nonlinear evolution
of perturbation growing in accordance with a ‘lift-up’ mechanism has a general nature and
it is not specific for our jet.

7. Conclusions

We experimentally studied the development of disturbances in a submerged jet with a
long laminar region by exciting roller-like cross-sectional stationary motion, which was
qualitatively similar to optimal perturbations of the flow profile. Visualization of the
transverse section of the jet at distances z/D = 0.5–3.5 downstream was performed, the
axial component of the velocity downstream was measured with a hot-wire anemometer
and a series of PIV measurements of the transverse (z/D = 1–2) and longitudinal
structures of the flow was conducted.

For the first time, we experimentally identified a non-modal mechanism of the
disturbances growth in a jet flow, which is an analogue of the ‘lift-up’ mechanism in
near-wall flows. The following characteristic features of the lift-up growth mechanism
have been confirmed:

(i) the transverse velocity remains approximately constant downstream;
(ii) the axial velocity increases downstream approximately linearly;

(iii) the transverse motion has the form of a ‘roller-like’ movement, transferring the
outer layers of the fluid inward and the inner layers outward. This motion causes a
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local increase in the axial velocity perturbation, which is an analogue of the streaky
structure in near-wall flows.

The development of the jet is traced up to the transition to turbulence, which is preceded
by the separation of the petals from the jet core and the formation of necks between the core
and petals. Shortly after the neck formation, we observed the rapid growth of unsteadiness
that finally destroyed the laminar flow.

Thus, the avoidance of the modal growth of Kelvin–Helmholtz waves (due to small
incoming turbulence intensity) and the excitation of the non-modal ‘lift-up’ growth
mechanism, demonstrated in this work, lead to a different scenario of transition to
turbulence, not previously observed in jet flows. Further research into this transition
scenario, including transition caused by a combination of modal and non-modal
mechanisms of linear growth, can be used in various technical devices for intensifying
mixing and heat transfer. It is also possible that careful combination of these two
mechanisms will, on the contrary, delay transition in jets, as was demonstrated by
Shahinfar et al. (2014) in the boundary layer.
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