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Abstract—We consider bending vibrations of a fluid-conveying pipe resting on an elastic foun-
dation with nonuniform elasticity coefficient. Previously A. G. Kulikovskii showed analytically
that the elasticity parameters can be distributed in such a way that at every point the system is
either locally stable or convectively unstable. In this case, despite the absence of local absolute
instability, there exists a global growing mode whose formation is associated with the points
of internal reflection of waves. In the present paper, we perform a numerical simulation of
the development of the initial perturbation in such a system. In the linear formulation we
demonstrate how the perturbation is transformed into a growing eigenmode after a series of
reflections and passages through a region of local instability. In the nonlinear formulation,
where the nonlinear tension of the pipe is taken into account within the von Kármán model, we
show that the perturbation growth is limited; in this case the vibrations acquire a quasi-chaotic
character but do not leave the region bounded by the internal reflection points determined by
the linearized problem.

DOI: 10.1134/S0081543823040028

1. INTRODUCTION

In [6], Kulikovskii studied the natural bending vibrations of a nonuniform elastic pipe filled with
a flowing fluid by the analytic WKB method (Fig. 1). The pipe was characterized by a bending
stiffness D that was a function of the spatial coordinate and varied slowly according to a quadratic
law. The dispersion equation is of the fourth order in the wave number k, so there exist four spatial
waves ki(ω), i = 1, . . . , 4. It was demonstrated that for a certain choice of the parameters, there
exists a region −A2 < x < A2 in which the pipe is locally unstable and there are internal reflection
points (turning points in terms of the WKB method) x = ±A3, |A3| > |A2|. In this case there arises
a system of three waves transforming into each other that form an eigenfunction with the following
structure:

• the wave corresponding to the wave number k2 propagates from left to right; moreover, for
x < −A2, the wave number k2 is real;

• upon passing through the point x = −A2, this wave turns into one growing and one decaying
wave (complex conjugate k1 and k2); the k1 wave grows in the interval −A2 < x < A2, which
contains the origin;

• upon passing through the point x = A2, these waves turn into two waves with real k1 and k2,
with the amplitude of the k2 wave being greater than its amplitude before the amplification
interval −A2 < x < A2;
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Fig. 1. Pipe with a flowing fluid on an elastic foundation.
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Fig. 2. The structure of wave propagation and turning points: (a) in the original formulation [6] and
(b) after modification.

• the k2 wave is reflected from the point x = A3 > A2 and turns into a k4 wave propagating in
the opposite direction (to the left);

• in turn, the k4 wave is reflected from the symmetric point x = −A3 and turns into the k2 wave;
then the cycle of reflections is repeated;

• the k1 wave leaves the interval (−A3, A3) and propagates indefinitely to the right.

Thus, there is a closed cycle of reflections of waves from the turning points x = ±A3. The cycle is
shown schematically in Fig. 2a. In each cycle, the amplitudes increase when the waves pass through
the interval (−A2, A2), and the wave corresponding to k1 is emitted and propagates indefinitely to
the right.

The goal of the present study is to numerically simulate the above-mentioned process, in which
we also take account of nonlinear terms. Note, however, that the emission of the k1 wave propagating
indefinitely in the direction of x → +∞ makes it difficult to set the boundary condition in numerical
simulation. To overcome this difficulty, we have modified the problem as follows: instead of dealing
with the nonuniform bending stiffness of the pipe considered in [6], we assume that the stiffness F
of the elastic foundation is nonuniform and varies according to the same quadratic law. In this
case there also arises a system of four waves transforming into each other, but now the k1 wave
does not just leave the region (−A3, A3) but is reflected from the new turning point x = A4 > A3

and turns into a wave with real k3 that propagates to the left. In turn, the latter wave is reflected
from the symmetric point x = −A4 and turns into a wave with real k1 that propagates to the
right. Thus, after this modification, the whole vibration of the pipe is localized in the interval
−A4 < x < A4 (Fig. 2b). Imposing any boundary conditions at points away from (−A4, A4) makes
it possible to numerically observe the cycle of growing waves transforming into each other that form
an eigenfunction.

Below, at the first stage, we numerically study the nonlinear problem describing the development
of a perturbation in a fluid-conveying pipe that lies on a nonuniform elastic foundation in the case
where the local stability or convective instability condition holds at all points. We show that in this
case a global eigenfunction is formed, which confirms the analytic constructions of [6].
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At the second stage, we introduce nonlinearity arising due to tensile stresses caused by bending
(von Kármán model of large deflections) into the original problem. We perform numerical simulation
of the development of a perturbation under the same conditions as at the first stage.

This problem attracts interest because the growing global eigenmode constructed in [6] does
not require the existence of a local absolute instability region: all points of the pipe exhibit either
convective instability or stability. At the same time, as proved in [2, 8], the presence of a local
absolute instability is a necessary condition for the existence of a growing global eigenmode for
second-order systems, i.e., for systems with two spatial waves. In a number of particular problems,
including the axially symmetric flows of a fluid in elastic tubes [16], the onset of the von Kármán
vortex street in the cylinder wake [9, 10], and hot jets [3], it has also been proved that the instability
of an inhomogeneous system occurs only in the presence of a local absolute instability region.
Kulikovskii showed in [6] that in the case of interaction of more than two waves, a growing global
eigenmode can exist even without local absolute instability; i.e., the results of [2, 8] are not generally
valid for systems of order higher than 2. For second-order systems, possible forms of nonlinear global
eigenmodes, i.e., neutral oscillations of a nonlinear inhomogeneous system, were previously studied
in [11–13]. In all the found types of modes, the positions of the leading and trailing edges of the
perturbation are determined by the conditions dictated by the purely linear problem, while the
nonlinearity determines the behavior of the perturbation only in its central part. It is of interest to
find out whether this property extends to the nonlinear problem considered in the present paper, in
which not only there are more than two spatial waves, but also the nonlinearity exhibits qualitatively
different behavior.

2. LINEAR PROBLEM

2.1. Statement of the problem. Consider the problem of transverse vibrations of a pipe
resting on an elastic foundation and conveying an ideal incompressible fluid. The x axis is directed
along the unperturbed rectilinear axis of the pipe. The transverse displacement w(x, t) of the pipe
satisfies the equation [5]

ρ1
∂2w

∂t2
+ ρ2

(
∂

∂t
+ v

∂

∂x

)2

w = −Fw −D
∂4w

∂x4
, (2.1)

where ρ1 and ρ2 are the masses per unit length of the pipe and the fluid, respectively, v is the fluid
velocity, F is the stiffness of the elastic foundation, and D is the bending stiffness of the pipe (all
quantities are assumed to be dimensionless).

The pipe is clamped on both sides; i.e., the boundary conditions have the form

w(x, t)
∣∣
x=±L/2

=
∂w(x, t)

∂x

∣∣∣∣
x=±L/2

= 0, (2.2)

where L is the pipe length. The initial conditions are

w(x, 0) = w0(x),
∂w(x, 0)

∂t
= w1(x). (2.3)

When we consider the wave motion w(x, t) = Aei(kx−ωt), the dispersion equation corresponding
to equation (2.1) and solved for ω has the form

ω = Uk ±
√
Qk4 − Pk2 +R(x), (2.4)

where

U =
ρ2v

ρ1 + ρ2
, P =

ρ1ρ2v
2

(ρ1 + ρ2)2
, Q =

D

ρ1 + ρ2
, R(x) =

F (x)

ρ1 + ρ2
.
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We assume that the elasticity coefficient of the foundation is distributed nonuniformly according
to the law R(x) = A+Bx2, and U , P , Q, A, and B are positive constants, with A and B assumed
to be small. From a physical point of view, such a function R(x) means the weakening of the
restoring force near the origin.

2.2. Turning points. Let ω(k) = Uk ±
√

Qk4 − Pk2 +A+Bx2. Consider the graph of the
function ω(k) for real k and x = 0 (Fig. 3). All graphs here and in what follows are plotted for the
following parameters of the problem:

ρ1 = 0.1, ρ2 = 0.9, v = 8, D = 7, A = 0.1, B = 0.002.

The value of A = R(0) is chosen so that the inequality Qk4 − Pk2 + R(x) < 0 holds at x = 0
in some interval of values of k (Fig. 3), which vanishes with increasing x. Thus, in a neighborhood
of the origin the system exhibits instability. The parameter B is taken to be small to ensure a
slow variation of the function R(x). To ensure the growth of the eigenmode constructed in [6] in
the form of a chain of waves transforming into each other, it is necessary that the frequency ω
should correspond to values from the range ω1 < ω < ω2 in Fig. 3. In this case the local growth of
perturbations occurs near the origin (Im k < 0 for a wave propagating from left to right); moreover,
the condition of local convective instability ρ1/ρ2 < 1/8 holds at all points (see [7]). Next, for
calculations we take the value

ω = ω0 = 3.266,

which is shown in Fig. 3.
In the plane of real k and x (Fig. 4) the curve ω(k, x) = ω0 has a shape that ensures the growth

of perturbations near the origin.
The turning points, i.e., the values of x that correspond to the branching of the function k(ω)

at a given frequency ω0, can be found as follows. The coordinate x is a parameter in the dispersion
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Fig. 3. Dispersion curve ω(k) for x = 0. Fig. 4. The function x(k) for ω = ω0 (gray
curve) and ω = ωmax (black curve).
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Fig. 5. Dispersion curve for ω = ω0 (gray) and ω = ωmax (black): (a) for x = A2(ω), (b) for
x = A3(ω), and (c) for x = A4(ω).

relation (2.4). Gradually increasing the value of x, we find all the necessary points:
(1) The straight line ω = ω0 is tangent to the branches of the graph of ω(k) at x = A2(ω0) = 19.5

(Fig. 5a). In the interval −A2 < x < A2, the k1 wave experiences a spatial growth.
(2) One of the branches of ω(k) is tangent to the straight line ω = ω0 at x = A3(ω0) = 139.8,

which corresponds to the first internal reflection point A3 (Fig. 5b). The k2 wave is reflected
from the point A3, turns into the k4 wave, and propagates in the opposite direction to the
point −A3, where it transforms back into the k2 wave.

(3) The other branch of ω(k) is tangent to the straight line ω = ω0 at x = A4(ω0) = 338.3, which
corresponds to the second internal reflection point A4 (Fig. 5c). The k1 wave is reflected
from the point A4, turns into the k3 wave, and propagates in the opposite direction to the
point −A4, where it transforms into the k1 wave.

Alternatively, one can find all turning points by fixing ω(k, x) = ω0 and solving the equation
∂ω/∂k = 0 for x. The graph of the function x(k) and the positions of the turning points are shown
in Fig. 4.

Notice that the chosen frequency ω0 is not the most rapidly growing one and does not correspond
to the maximum length of the growth interval on the x axis. The longest growth interval is provided
by the frequency

ω = ωmax = 4.618,

which corresponds to the merging of the branches in the graph of ω(k) (Fig. 5a) and the vanishing
of the instability region with increasing x. For the frequency ωmax we have

A2(ωmax) = 23.3, A3(ωmax) = 90.7, A4(ωmax) = 376.2.

2.3. Finite-difference scheme for the equation of vibrations of a fluid-conveying pipe
on a nonuniform foundation. Let us construct a finite-difference scheme for equation (2.1),
which we rewrite as

D
∂4w

∂x4
+ (ρ1 + ρ2)

∂2w

∂t2
+ 2ρ2v

∂2w

∂x∂t
+ ρ2v

2 ∂
2w

∂x2
+ Fw = f(x, t), (2.5)

where F (x) = (A+Bx2)(ρ1 + ρ2) and f(x, t) is the body force added to the right-hand side, which
will be used below to introduce a perturbation. We define a uniform grid in x and t:

xm = −L

2
+mh, m = 0, . . . ,M, h =

L

M
, tn = nτ, n = 0, . . . , N, τ =

tN − t0
N

,

where M is even.
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Fig. 6. Stencil of the finite-difference scheme.

Let us approximate the derivatives by finite differences up to orders O(τ2), O(τh), O(h2), and
O(h2) according to the stencil shown in Fig. 6. Denoting w(xm, tn) by wn

m, we have

∂2w

∂t2
=

wn+1
m − 2wn

m + wn−1
m

τ2
,

∂2w

∂t∂x
=

wn+1
m+1 + wn−1

m−1 − wn−1
m+1 − wn+1

m−1

4τh
,

∂2w

∂x2
=

(
wn+1
m−1 − 2wn+1

m + wn+1
m+1

)
+

(
wn−1
m−1 − 2wn−1

m + wn−1
m+1

)
2h2

,

∂4w

∂x4
=

(
wn+1
m−2−4wn+1

m−1+6wn+1
m −4wn+1

m+1+wn+1
m+2

)
+

(
wn−1
m−2−4wn−1

m−1+6wn−1
m −4wn−1

m+1+wn−1
m+2

)
2h4

.

Substituting these formulas into equation (2.5), we obtain finite-difference equations for the interior
grid points with m = 2, . . . ,M − 2 and n = 2, . . . , N .

As said above, the perturbation is introduced via the body force; therefore, we use the zero
initial conditions w0(x) = w1(x) = 0 in the calculations. Then the initial and boundary conditions
for the finite-difference problem have the form

w(x, 0) = w0
m = 0,

∂w

∂t

∣∣∣∣
t=0

=
w1
m − w0

m

τ
= 0, (2.6)

wn+1
0 = wn+1

N = 0,

∂w

∂x

∣∣∣∣
x=−L/2

=
wn+1
1 − wn+1

0

h
= 0,

∂w

∂x

∣∣∣∣
x=L/2

=
wn+1
N − wn+1

N−1

h
= 0.

(2.7)

Since, as shown below, the perturbations do not interact with the boundaries of the computation
domain, the lower order of approximation O(h) of the boundary conditions does not reduce the
approximation order of the whole problem.

In each time layer, the equations obtained form a closed system of linear algebraic equations for
the unknowns (wn+1

0 , wn+1
1 , . . . , wn+1

M )T, which is solved by the pentadiagonal matrix algorithm [1].
We introduce the perturbation locally at the center of the pipe by an additional external body

force on the right-hand side of equation (2.5) with density

f(xm, tn) =

⎧⎨
⎩

0.05

h
sin(ω0tn)Θ(tn) for m =

M

2
,

0 otherwise,

Θ(tn) =

{
1 for tn < t∗,

0 for tn ≥ t∗,
t∗ = 10

2π

ω0
;

(2.8)

i.e., we define a sinusoidal excitation with frequency ω0 that acts for ten vibration periods and is
turned off after that.

The computer program that solves the problem was tested for convergence with respect to the
space and time steps and checked on the problem of simulation of eigenfrequencies and vibration
modes of an empty uniform pipe and on the problem of determining the boundary of the abso-
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10 K. E. ABDUL’MANOV, V. V. VEDENEEV

lute/convective instability of a uniform fluid-conveying pipe. In all the cases the results of calcula-
tions coincided with the theory.

2.4. Results of calculations. The spatial domain [−700, 700] � x in the calculations was
chosen with a margin so that one could observe the almost complete damping of vibrations outside
the interval −A4 < x < A4. The perturbation has ten vibration periods and mostly propagates to
the right, although there is a perturbed region of small amplitude that moves to the left. Upon
leaving the growth region −A2 < x < A2, the perturbation represents a “wave train” containing
both right-propagating waves k1 and k2. The calculations show that part of the perturbation
(corresponding to k2) does not propagate beyond the point A3 and is reflected from it, while the
other part (corresponding to k1) propagates further and is reflected from the point A4 (Fig. 7).
The reflected waves (corresponding to the wave numbers k4 and k3) propagate to the left and are
reflected from the points −A3 and −A4, as expected from theoretical considerations.

While passing through the interval (−A2, A2), the numerically calculated perturbation grows,
which is consistent with the theory. Since the perturbation splits into several independent wave
trains and they pass through the growth interval at different time points, the growth of perturbations
is observed intermittently: there is a time interval of growth, then the growth stops for some time,
and later it resumes again. Figure 8 demonstrates the typical state of the perturbed pipe before
and after a particular time interval of growth.

x

w

A2 A3 A4

−A2

−A3−A4

0

0 200 400 600−200−400−600

0.05

0.1

−0.05

−0.1

Fig. 7. Reflection from the points A3 and A4, t = 59.5. The gray strips are the location ranges of
the points ±A2(ω), ±A3(ω), and ±A4(ω) for ω0 ≤ ω ≤ ωmax.
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Fig. 8. Perturbation at time points corresponding to (a) the beginning t = 61 and (b) the end
t = 73.5 of an individual growth period of the perturbation.
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Fig. 9. The functions A2(ω), A3(ω), and A4(ω).

Figures 7 and 8 show that part of the perturbation nevertheless propagates slightly beyond the
points A3(ω0) and A4(ω0). This is associated with the fact that the given localized perturbation of
frequency ω0 acts during a finite time interval 0 < t < t∗. Obviously, the dominant frequency in this
interval is ω0, but there are inevitably other frequencies. The perturbations with higher frequencies
ω > ω0 are reflected at points A4 and A3 that are, respectively, farther from and closer to the center
of the pipe. The positions of these points as functions of the frequency ω are depicted in Fig. 9.

Although the components with higher frequencies ω ∼ ωmax > ω0 have a small initial amplitude,
they eventually become dominant due to their higher growth rate. As a result, the positions of the
turning points also slightly shift. For this reason, in Fig. 7 and the subsequent figures we indicate
the location intervals of the turning points A3(ω) and A4(ω), as well as the boundaries of the growth
region A2(ω), in the frequency range ω0 ≤ ω ≤ ωmax.

Nevertheless, the calculations show that the perturbation does not propagate beyond certain
boundaries on the x axis even for sufficiently large t. We can expect that this is so due to the
boundedness of the initial frequency spectrum of the perturbation.

To confirm this conjecture, we constructed discrete spectra of the perturbation (using the discrete
Fourier transform) on the interval 0 < t < T , where T is the time point of interest, at the points
x1, x2, x3, and x4:

A2 < x1 = 100 < A3 < x2 = 300 < A4 < x3 = 380 < x4 = 415.

Figure 10 shows the most interesting range of frequencies from 0 to 12. Figure 10a corresponds in
time to Fig. 7, and one can see from it that before the reflection point A4 (the curve corresponding
to x2 = 300) the spectrum contains waves with frequencies ω > ω0; hence, these waves will be
reflected from x = A4(ω0) = 338.3 farther downstream than expected. This can be observed in
Fig. 7.

Based on the shape of the spectrum at time t = 360 (Fig. 10b), we can conclude that the initial
spectrum with dominant frequency ω0 eventually transforms into spectrum with higher frequencies
ω ∼ ωmax, which have a higher growth rate and therefore become dominant. The final form of
the perturbation contains waves with frequencies different from ω0, up to ω ≈ 5.7. According to
Fig. 9, perturbations with these frequencies must not propagate beyond the point A4 ≈ 406. The
calculations did not reveal the propagation of perturbations beyond this point either.

Over a long time interval after several cycles of reflections and growth, the initial perturbation
gradually takes the shape shown in Fig. 11. After that this perturbation hardly changes its shape
but indefinitely increases with time since the problem is linear. Thus, the numerically calculated
evolution of the perturbation is consistent with the theoretically expected behavior.
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Fig. 10. Discrete spectrum at time points (a) t = 59.5 and (b) t = 360.
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Fig. 11. Perturbation w(x, t) at t = 318.5.

3. NONLINEAR PROBLEM

3.1. Statement of the problem. Since in reality a perturbation cannot grow indefinitely, we
consider an additional nonlinear tension of the pipe due to its bending according to the von Kármán
model of large deflections [17]:

ρ1
∂2w

∂t2
+ ρ2

(
∂

∂t
+ v

∂

∂x

)2

w +D
∂4w

∂x4
+ Fw −N

∂2w

∂2x
= 0, (3.1)

N =
E

2L

L/2∫
−L/2

(
∂w

∂x

)2

dx =
6D

L

L/2∫
−L/2

(
∂w

∂x

)2

dx,

where E is the Young’s modulus of the pipe material. In many cases it is this nonlinear term
(related to tension) that dominates during the growth of the perturbation amplitude and restricts
this growth [14, 15]. The boundary and (zero) initial conditions are the same as in the linear case
(see (2.2) and (2.3)).

3.2. Finite-difference scheme for the nonlinear problem. Let us rewrite equation (3.1)
as follows:

D
∂4w

∂x4
+ (ρ1 + ρ2)

∂2w

∂t2
+ 2ρ2v

∂2w

∂x∂t
+ (ρ2v

2 −N)
∂2w

∂x2
+ Fw = f(x, t), (3.2)
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N =
6D

L

L/2∫
−L/2

(
∂w

∂x

)2

dx, F = (A+Bx2)(ρ1 + ρ2).

All the derivatives appearing in equation (3.2) are approximated in the same way as in Subsec-
tion 2.3. To calculate the integral appearing in (3.2), we apply the following quadrature formula:

L/2∫
−L/2

f(x) dx = f(x0)h+

M−2∑
m=1

f(xm) + f(xm+1)

2
h+ f(xM )h, f(xi) =

(
∂w

∂x
(xi)

)2

.

Here

f(x0) =
(w1 −w0

h

)2
and f(xM ) =

(wM −wM−1

h

)2
are the forward and backward differences, respectively, which approximate the integrand up to
order O(h), and

f(xm) =
(wm−1 − wm+1

2h

)2
, m = 1, . . . , N − 1,

is the central difference, which approximates the integrand up to O(h2). Then

N =
6D

L

[
(w1 − w0)

2

h
+

1

2

N−2∑
m=1

(
(wm−1 − wm+1)

2

4h
+

(wm − wm+2)
2

4h

)
+

(wN −wN−1)
2

h

]
. (3.3)

The value of N in the finite-difference equations was calculated in the intermediate, nth, time layer;
therefore, the solution of the algebraic problem in the (n + 1)th layer does not differ from that in
the linear case.

The initial (2.6) and boundary (2.7) conditions, as well as the method of introducing the per-
turbation (2.8) for the nonlinear problem, are the same as in the linear case. Note that since we
have f(x0) = f(xm) = 0 in view of the boundary conditions, the approximation of the integrand
in N (3.3) is actually of order O(h2).

3.3. Results of calculations. At the first moments (while the amplitude remains small), the
calculation of the nonlinear problem yields almost the same results as for the linear problem. For
example, in Figs. 12 and 13 we plot the perturbations at the same time points as for the linear
problem (Figs. 7 and 8). One can see that they are almost identical.
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0

0 200 400 600−200−400−600
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0.1
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−0.1

Fig. 12. Reflection from the points A3 and A4 in the nonlinear problem (t = 59.5).
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Fig. 13. (a) Beginning t = 61 and (b) end t = 73.5 of the growth of the perturbation in the nonlinear
problem.
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Fig. 14. Perturbation at the time points (a) t = 2940, (b) t = 2970, and (c) t = 3000.

Significant differences are observed after a long simulation time, t > 126, when the amplitude
reaches a value of 1 or higher. From this time the perturbation amplitude in the nonlinear case is
much lower than in the linear case, and its growth rate tends to zero with time. In the course of
time the amplitude reaches a value on the order of 1 at all points of the interval −A4 < x < A4,
which is drastically different from the situation in the linear problem (Fig. 11), where the amplitude
reaches its maximum near the right boundary of the growth interval (−A2, A2). It becomes difficult
to visually identify the regular component of vibrations, and the motion becomes quasi-chaotic.
The calculation of the nonlinear problem was carried out up to t = 3000, which is much longer
than in the linear case (t = 360). The dynamics of the development of the perturbation at the final
time points is shown in Fig. 14, where one can see that the bending of the pipe does not exceed 3
even after such a long time. It is worth noting that the perturbation does not leave the interval
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Fig. 15. Perturbation at different points: (a) spectrum and (b) autocorrelation function.

−A4 < x < A4 (where A4 = A4(ω)) even in the nonlinear case; moreover, the amplitude in the
interval −A3 < x < A3 is higher than that outside this interval; i.e., the internal reflection points
retain their function even in the nonlinear case.

Figure 15 demonstrates the spectrum and the autocorrelation function of the perturbation for
the nonlinear problem in the whole time range at the same points as in Subsection 2.4. One can see
that the entire range of frequencies from 0 to 6.5 is present in the spectrum to a significant extent.
At the center of the pipe the dominant frequency is lower than the initially introduced perturbation
frequency, while away from the center the former is higher than the latter. The expansion of the
range of frequencies involved in the perturbation (compared to the frequency range ω0 < ω < ωmax
observed in the linear problem) and the redistribution of spectral amplitudes occur due to the
nonlinear term in (3.1) and (3.2).

Figure 15b shows a slow decay of the autocorrelation function. Hence we can conclude that
the regular component of the perturbation gradually disappears and the quasi-chaotic character of
vibrations becomes more pronounced, which corresponds to the visually observed vibration process.

4. CONCLUSIONS

We have numerically simulated the propagation of a perturbation in a long pipe resting on a
nonuniform elastic foundation and filled with a moving fluid. In this case the function describing the
dependence of the wave number on the frequency has branch points, which determine the instability
region and the internal reflection points in the pipe [6]. The development of the perturbation intro-
duced into such a system was previously studied analytically in [6]. The results of our calculations
of the linear problem correctly reproduce the analytical results of [6]. Namely, one can observe the
main spatial regions that determine the structure of the growing eigenfunction: both the growth
interval of the perturbation and the internal reflection points.

We have also numerically solved the nonlinear problem in which the dominant nonlinear tension
of the pipe caused by its bending is taken into account. The results of calculations show that
although the perturbation grows in the initial interval in the same way as in the linear problem,
after reaching an amplitude on the order of 1 the growth of vibrations stops under the influence of
nonlinear terms. The analysis of the character of vibrations, the spectrum, and the autocorrelation
function reveals that the regular components of the perturbation decay with time and quasi-chaotic
vibrations gradually start to dominate; moreover, the bending amplitudes of the pipe become of
the same order of magnitude throughout the interval −A4 < x < A4. The nonlinearly developing
perturbation in the interval −A3 < x < A3 has a higher amplitude than for −A4 < x < −A3 and
A3 < x < A4, while outside the interval −A4 < x < A4 the perturbation exponentially decays away
from this interval. Thus, the internal reflection points do not change their position and preserve
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their function in the nonlinear case. In other words, although the perturbation in the nonlinear case
develops in a significantly different way, its boundaries are determined by the linearized problem.

As pointed out in the Introduction, for linear systems of the second order in x (i.e., systems
with two spatial waves) with variable coefficients, it was earlier proved that the presence of a region
of local absolute instability is a necessary condition for the existence of a growing global linear
eigenfunction [2, 8]. A similar result was obtained for a semi-infinite problem in the region x > 0
(see [4]). In this regard the results of [6], which have been confirmed numerically in the present
study, show that this assertion is not generally true in the presence of more than two spatial waves.
In fact the problem considered here is a counterexample: there exists a growing global eigenmode,
but there is no local absolute instability at any point.

A different conclusion can be made in the case of nonlinear eigenmodes. Earlier the structures of
nonlinear global eigenmodes for second-order systems were studied based on the Ginzburg–Landau
model equation. There were distinguished “soft” modes [11], in which the amplitude varies slowly
as a function of the coordinate, and “steep” modes [13], in which a rapid growth of the amplitude
occurs at one of the edges defined by the boundary of the linear absolute/convective instability
region. The soft nonlinear modes result from the development of growing global linear eigenmodes,
while the steep modes may arise even in the absence of global linear instability [12]. A global
eigenmode of similar structure was constructed in the case of the semi-infinite region x > 0 (see [4])
on the basis of the same model equation.

An important feature of the nonlinearity considered in the cited papers is its local character,
which has allowed the authors to obtain a nonlinear local dispersion equation and to construct
asymptotic structures of global nonlinear eigenmodes using a generalization of the WKB method.
In all cases it turned out that the boundary of the region occupied by the eigenmode is determined by
purely linear properties of the problem. In other words, nonlinear phenomena manifest themselves in
a developing perturbation up to its saturation (cessation of growth) but do not affect its boundaries.
In the present study, we have obtained exactly the same result: a developed nonlinear perturbation
does not leave the region −A4 < x < A4 defined by the linear problem even after passing to
the quasi-chaotic regime, and in the region −A3 < x < A3 (whose boundaries reflect part of the
waves in the linear case) this perturbation has a higher amplitude. Moreover, the nonlinearity
considered in the present study is essentially nonlocal (it integrally depends on the deformation of
the pipe throughout its length); therefore, analytical constructions similar to those in [4, 11–13] are
impossible in principle in this case. We can conjecture that the edges of the developed nonlinear
perturbation will only be governed by the linear problem in a much more general situation than
that considered in [4, 11–13].
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