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Abstract—The family of velocity profiles of a submerged jet, which are absolutely unstable in the
plane-parallel approximation, is considered. The profiles are specified by two parameters: the first of
them is responsible for the location of the only inflection point in the velocity profile, and the second
is responsible for the shear layer thickness. An algorithm for determining the length of the region of
local absolute instability of the jet with a given input velocity profile, that is, the distance at which
absolute instability gives way to convective instability, has been implemented. The dependence of this
length on the parameters defining the input profile is obtained. A connection between the character-
istics of local absolute instability calculated in the plane-parallel approximation and global instability
of the jet evolving in space is analytically obtained. The input velocity profile that corresponds to suf-
ficiently large length of the zone of local absolute instability, at which global instability of spatially
developing jet occurs, is demonstrated. Thus, the possibility of existence of global instability of plane
submerged jets with special velocity distributions is demonstrated.
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A jet that f lows out into a medium with the same aggregate state as the jet itself is called a submerged
jet. Such jets are often encountered in science and technology, and their loss of stability and transition to
turbulence significantly affects such phenomena as combustion, mixing, chemical reactions, and sputter-
ing. The stability of jet f lows can depend on various factors, for example, the f low velocity, the density,
the viscosity, and the temperature of the jet and surrounding f luid, etc. Under certain specific conditions,
jet f lows can be laminar over large distances downstream [1–4], while under the normal conditions they
lose stability and become turbulent over distances of 1–2 widths/diameters of outlet cross-section. Con-
trol of submerged jets and prediction of their loss of stability are of interest in the context of fundamental
and applied problems.

Instability of a plane-parallel f luid f low can be of two types: convective and absolute. In the case of
convective instability, small disturbances are carried away with time, grow downstream, and, reaching a
certain level, lead to turbulence transition. In this case, the achievement of a significant amplitude of dis-
turbances and turbulence transition often occur much downstream from the place of origin of the growing
disturbance. As a consequence, such a f low may have the laminar region of large length [5]. Examples of
convectively unstable f lows are the plane-parallel Poiseuille f low [6, 7] and the Blasius boundary layer [8].
In the case of absolute instability, the disturbance grows unboundedly with time at the point in space (in
flow) where it appears.

The submerged jets with the classic velocity profiles and the density not different from the density of
the surrounding medium can be absolutely unstable only in the presence of a counterf low on the
boundary [9]. However, for the jets with complex “non-classical” profiles, it was found that absolute
instability without counterflow is possible for both the round [10] and plane [11] jets.

Owing to the spatial evolution of unperturbed flow, the existence of global eigenmodes, i.e., time-har-
monic disturbances localized in space (which is impossible in plane-parallel f lows) becomes possible.
More strictly, by eigenmodes we will mean the disturbances that satisfy zero conditions in the inlet jet
cross-section and at infinite distance from the jet in all directions, and depend on time as . If any− ωi te
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Fig. 1. Velocity profiles specified by the pair of parameters : ,  (a), ,  (b), and ,
(c). Red circle denotes the inflection point.
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eigenmode is growing in time, then the region of its localization is a zone of generation of self-excited
oscillations. We will call the existence of growing eigenmodes by global instability [12, 13], where the term
“global” emphasizes non-local (non-plane-parallel) stability analysis. An interest in creating globally
unstable f lows is due to the fact that areas of self-excitation of oscillations in their nonlinear development
can lead to the development of regular secondary or chaotic turbulent f lows, which can be used in the
designing of various devices and technologies to intensify mixing.

It is well known [12, 13] that in evolving f lows with the presence of two spatial waves (that is, described
by the second-order dispersion equation in the wavenumber), for existence of a growing global eigen-
mode, the presence of a zone of local absolute instability is necessary. The global instability of f low, which
is caused by local absolute instability, explains a number of phenomena: the appearance of the Kármán
street in the wake of a cylinder [14, 15], oscillations and destruction of hot jets [16], oscillations of the wake
of wing airfoils [17], disintegration of liquid jets into drops [18, 19], and axisymmetric motions of a non-
Newtonian liquid in inhomogeneous elastic tubes [20].

However, this condition is not sufficient: for growing global oscillations to develop, in the general case,
the zone of local absolute instability must be sufficiently extended, and the growth rate must be suffi-
ciently large. Otherwise, the surrounding zone of convective instability will “outweigh” the absolute insta-
bility: the disturbances arising in the zone of absolute instability will partially leave it and be carried down-
stream, which will prevent the growth of such disturbances in the generation zone. As a result, all global
eigenmodes will be damped, that is, there will be no zones of generation of self-excited oscillations in f low,
and the introduced growing disturbances will be carried downstream.

In the present work, the length of the region of local absolute instability of a plane submerged jet is
determined. Section 1 provides the mathematical formulation of the problem and gives the brief descrip-
tion of the algorithm for determining the length of the region of local absolute instability. Section 2 is
devoted to detailed description of the algorithm. Section 3 describes the results of calculations for the con-
sidered family of velocity profiles. In Section 4 the characteristics of the zone of local absolute instability,
leading to global instability of a spatially evolving jet are defined; an example of parameters under which
global instability can be expected is given.

1. FORMULATION OF THE PROBLEM
We will pose the problem, whose aim is to develop an algorithm for determining the lengths of local

absolute instability regions of plane unidirectional jets, specified by the initial velocity profiles introduced
in [11] and determined by two parameters . The parameter  is responsible for the location of the
inflection point in the velocity profile; the parameter  determines the width of the shear layer of the jet
(Fig. 1). The axis x lies in the plane of f low and is directed downstream, the  axis is perpendicular to it
and lies in the plane of f low.

Initially, we will numerically simulate steady-state f low and calculate the downstream evolution of the
initial jet velocity profile specified by a pair of parameters . Then, we will analyze the type of instability
of the velocity profiles at various distances from the beginning of the jet by searching for saddle points on
the complex wave number plane (Reα, Imα). Thus, we search for the length of the local absolute insta-
bility region of a particular jet, determined by the parameters  of the initial velocity profile. The term
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ABSOLUTE AND GLOBAL INSTABILITY 641
“local” is used in the sense that the analysis of the nature of instability is carried out in the plane-parallel
approximation without taking into account modification of the velocity profile along the coordinate x.

The study and the results are presented in dimensionless form; the maximum velocity Umax and half the
width of the jet h/2 are taken as the linear scales of the velocity and the length, respectively. Using these
parameters, the Reynolds number of the f low R = 9000 is also calculated. This value of R was taken based
on experiments carried out on a facility that creates a laminar plane air jet of thickness  m with the
maximum velocity on the jet axis Umax = 2.78 m/s. Based on the results of ongoing theoretical work, it is
planned to conduct experiments on this facility on creating globally unstable f low.

The instability is studied in the inviscid approximation since the jets are analyzed at the Reynolds num-
bers that can be considered to be farly high for the following reason. In [11], a plane-parallel analysis of
instability was carried out with account for viscosity and critical Reynolds numbers which separate
the convective and absolute instability zones. The results of the theoretical analysis were confirmed
by direct numerical simulation. The characteristic critical Reynolds numbers are of the order of 1000,
i.e., they are an order lower than those considered in the present study. This justifies the use of invis-
cid stability theory.

Thus, the algorithm consists of the following stages:
(1) parameterization of the initial velocity profile: choice of a pair of the parameters ;
(2) laminar time-independent calculation of the jet with a given initial velocity profile;
(3) processing of numerical calculation results: recording the velocity profiles at various distances

downstream;
(4) analysis of the type of instability (convective/absolute) of these velocity profiles;
(5) determination of the distance at which absolute instability gives way to convective instability.
What follows is a detailed description of each stage.

2. DESCRIPTION OF THE ALGORITHM FOR DETERMINING THE LENGTH 
OF THE REGION OF LOCAL ABSOLUTE INSTABILITY

2.1. Family of the Velocity Profiles under Study

Setting the initial profile by the parameters ,  was carried out using fifth-degree splines, in accor-
dance with how it was done in [11]. Initially, we will consider the case :

(2.1)

The velocity profile under study has a single inflection point at a given point . The poly-
nomials of this type must satisfy the boundary conditions:

To determine the coefficients of polynomials, the smoothness conditions are set at the point of gluing
the polynomials:

there are also three following conditions at the inflection point:

Thus,  is the control parameter of the inflection point of the velocity profile: it is located at the point
, and the velocity at the inflection point is . In Fig. 1a we have plotted the resulting

graphs.
The effect of the second parameter  at  is to increase the velocity gradient at the inflection point

by reducing the thickness of the shear layer of the jet, as shown in Fig. 1b. It occurs due to transformation
of the coordinate y. We will define the following spline function of the fifth degree on  in the segment

:
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Fig. 2. Computational domain for the symmetrical half of a plane unidirectional submerged jet.
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which satisfies the following conditions:

where y0 is the inflection point of the velocity profile,  is the control parameter, and . After
transforming the coordinates, the velocity profile takes the form:

where Us is the initial spline-defined velocity profile (2.1).
The resulting profile is controlled by both parameters:  sets the location of the inflection point, and

 determines the thickness of the shear layer (Fig. 1c).

2.2. Steady-State Flow Calculations

The laminar stationary calculation is carried out in the CFD complex with a given initial velocity pro-
file. The system of Navier–Stokes equations is solved by the control volume method implemented in the
Ansys CFX solver. The computational domain is shown in Fig. 2. It represents a symmetric half of the jet
and the region of the surrounding space, since the problem of the plane f low of a unidirectional jet is
solved. As a boundary condition at the inlet (dashed curve in Fig. 2), a streamwise velocity profile is spec-
ified — the velocity distribution along the coordinate y. At the outlet, the atmospheric pressure is speci-
fied, on the upper and left boundaries of the computational domain we have the free inlet/outlet, namely,
the zero normal gradient of the velocity direction and the atmospheric pressure, on the lower boundary —
the symmetry condition. The length of the calculation area is equal to 25 and the height is equal to 10.

To simulate plane f low, the three-dimensional model with a single layer of elements in the transverse
direction and the symmetry conditions on the side surfaces were considered. Hexahedral elements, whose
total number was equal to 272130 (470 × 579 elements along the x and y axes) were used; within the main
jet f low, the grid became denser, it contained 188000 (470 × 400) elements. The calculations were carried
out using a first-order spatial upwind scheme using the establishing method until the level of the maxi-
mum dimensionless discrepancy for all elements was reduced to 10–6. For all calculations described below,
convergence in the grid and the size of the computational domain has been achieved.

2.3. Processing of CFD Calculation Results. Analysis of the Type of Instability of the Velocity Profiles 
in a Jet at Various Distances from its Beginning

After completing the CFD calculation, the streamwise velocity profiles are taken at various distances
from the beginning of the jet downstream with a step . Here , where N is
the number of the first velocity profile, whose type of instability will be convective. For each of the velocity
profiles, linear instability is analyzed in the inviscid approximation. A plane-parallel approach in which
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ABSOLUTE AND GLOBAL INSTABILITY 643
 and  is used. The perturbations in the form of traveling waves are superimposed on
the unperturbed motion

(2.2)

The system of Navier–Stokes equations is linearized about the unperturbed state, taking into account
the fact that the Reynolds number of the f low under consideration is large: R = 9000, that is, we can
assume that . Thus, we obtain the Rayleigh equation for the disturbance component :

(2.3)

Here,  is the phase velocity, ω is the frequency, and α is the wavenumber. For the symmetric
velocity profile, the quantities  are always even and odd functions of y. The boundary conditions have
the following form:

(2.4)

(2.5)

(2.6)

We will explain the derivation of condition (2.6). It is assumed that outside the jet the medium is at rest:
 at . The general solution of the Rayleigh equation, which is the second-order differential

equation with constant coefficients in this domain, takes the form  ( ,
), and, since the disturbances decay as , we have . To merge the disturbance in the

external f low with the disturbance in the jet at  it is necessary that .
Equation (2.3) with boundary conditions (2.4)–(2.6) represent the eigenvalue problem  at a

given frequency  (that is, those α are sought for which the problem has a non-zero solution). For
each fixed α integration (2.3) from 0 to δ is carried out by the Runge-Kutta method with initial con-
ditions (2.4) and , or (2.5) and . Then the expression

is calculated and, using the secant method, we seek the zero of the function

In our calculations,  was adopted, since for all the velocity profiles considered below with high
accuracy  at .

Note that in the case of neutral perturbations (Imα = 0), the Rayleigh equation has a singularity lying
on the path of integration along the y axis [22]. However, this singularity disappears in the case of growing
disturbances. Therefore, the results for neutral perturbations given below were obtained as the limit of
growing perturbations at the growth rate tending to zero, i.e., as . This limitation could be
avoided by taking the integration path that bypasses the singularity in the complex plane y, as was done
in [21]; however, such an approach was not used in this study, since the nature of instability is determined
by the saddle point lying in the domain Imα < 0 in which this problem does not exist.

In the general case, the solution to the problem with initial data on the propagation of a localized dis-
turbance contains components of both a discrete and a continuous spectrum [22]. In the problem consid-
ered here, there is a single growing mode  from the discrete spectrum, whose behavior determines the

= ( )xu U y = = 0y zu u

α −ω

   
   
   
   
   
   

( )

' ' ( )

' '= ( ) .

' '( )

x x

i x t
y y

z z

u U y

u U y e

u U y

→ ∞R ψ' = ( )yU y

 ψ− − α ψ − ψ 
 

2 2
2

2 2( ( ) ) = 0.d d UU y c
dy dy

ω α= /c
ψ( )y

ψ at for the odd eigenfu= 0 nc i n= o0 ,td y
dy

ψ for the even eigenfun= 0 at = 0 ,ctiony

ψ + αψ δ= 0 at = .d y
dy

( ) = 0U y ≥ δy
α −αψ +1 2= y yC e C e 1 2, = constC C

α ≥ 0 → ∞y 1 = 0C
δ=y δψ −αψ=/ | =yd dy

α ω ∈( ) C

ω ∈ R

ψ(0) = 1 ψ/ (0) = 1d dy

ψΨ α δ + αψ δ( ) = ( ) ( ),d
dy

Ψ α( ) = 0.

δ = 1.2
≈( ) 0U y δ>y

α → −Im 0

ω α( )
FLUID DYNAMICS  Vol. 59  No. 4  2024



644 VEDENEEV et al.

Fig. 3. Velocity profiles (a) and the corresponding level lines Imω = 0 in the plane  for a jet with the parameters
 and ; (b) dashed curves correspond to the velocity profiles and level lines at x = 1, dotted at x = 2, dash-

and-dot at x = 4, and solid at .

(b)(a)0.2
0.4
0.6
0.8
U

0 y0.80.60.40.2
�3

�2

�1

0 2 4 6 8 10
Re �

Im �

α ∈ C

ξ = 0.25 ζ = 2
= 6.6x
asymptotic (as ) behavior of the perturbation  (here, w is any of the components of velocity
perturbation); therefore, it can be written in the form of the Fourier integral:

(2.7)

The type of instability, i.e., the tendency of  to 0 or  as , is determined by the saddle point
method [22] and reduces to analyzing the behavior of level lines  in the plane . For the fam-
ily of velocity profiles under consideration, there is a saddle point  in this plane, through which the
integration contour for the Fourier integral (2.7) can uniquely be drawn [10]. Note that as  ,
the integration path coincides with the straight line , when . In this case, the asymp-
totic behavior of the Fourier integral is determined by the value of the quantity  at the
saddle point  in the plane  and, according to the saddle point method, takes the following form:

(2.8)

where . In the case of absolute instability at the saddle point we have , while in the case of
convective instability .

As an example, for a jet with the initial velocity profile determined by the parameters ,
in Fig. 3a we have plotted the velocity profiles at the distances  and 6.6. In Fig. 3b the con-
structed level lines  for  and 4 correspond to the case of absolute instability. In these
cases, the integration path and the directions of increase and decrease in Imω in the vicinity of the saddle
point are shown in Fig. 4a: the value of Imω is positive at the saddle point. In the case of convective insta-
bility (x = 6.6, solid curves in Fig. 3b), one of the level lines  continuously connects two neutral
disturbances, and the directions of increase and decrease in Imω in the vicinity of the saddle point are
such that the value of Imω at the saddle point turns out to be negative (Fig. 4b). Thus, in the case of con-
vective instability, one of the branches continuously connects two neutral disturbances, and the sign of
Imω is negative at the saddle point. Similarly, by analyzing the location of level lines in the complex wav-
enumber plane, the type of instability is determined for each profile considered for each of the calculated
jets. The automated analysis was performed as follows:

(1) The above-described eigenvalue problem  is solved at real frequencies .
The calculations start with  with subsequent decrease in ω. The result is the right-hand level line

 (Fig. 3b) in form of a two-dimensional array of values of Reα and Imα.
(2) The left part of this level line (after passing through the vicinity of the saddle point with decrease in )

determines the nature of instability. To do this, an array of differences  is calculated from
the array Imα. Based on the predominance of negative or positive numbers in it, it is concluded whether
the level line goes down or up after passing the vicinity of the saddle point. In the first case, the instability
is absolute (Fig. 4a), in the second - convective (Fig. 4b).

(3) Steps 1–2 are carried out for slices of the velocity profiles, whose initial form is determined by the
pair , with a step  until the nature of instability changes from absolute to convective. Thus,
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Fig. 4. Level lines Imω = 0 in the plane  in the cases of absolute (a) and convective (b) instability for the jet velocity
profiles at various distances from the beginning. Black dot denotes the vicinity of the saddle point. Signs “ ” in gray cir-
cles show the directions of decrease and increase in the vicinity of the saddle point. Thin curve with arrows shows the inte-
gration path. The type of curves corresponds to Fig. 3.
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for each pair , the downstream coordinate x = L is calculated, which determines the length of the
region of local absolute instability.

3. RESULTS OF CALCULATION OF LOCAL ABSOLUTE INSTABILITY OF JETS

Using the algorithm developed, an analysis of 600 jet velocity profiles specified by various pairs ( , )
was carried out. The parameter  varied in the range [0.025; 0.5] with a step 0.025 and the parameter 
varied in the range [1.05; 2.5] with a step 0.05. The results of calculating the length of the local absolute
instability region are shown in Fig. 5. Dark blue color in the fill indicates the absence of the region of local
absolute instability, yellow color indicates the area in the  plane with the greatest length obtained. For
the longest region we have .
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In [11], for the range of parameters ,  (without taking into account the evolu-
tion of the jet profile downstream), the boundary of absolute and convective instabilities was found, i.e.,
a curve above which the velocity profiles are absolutely unstable and below which they are convectively
unstable. In Fig. 5, this curve is shown by a white dashed line. It can be seen that in the fill obtained in this
work, in the region below the dashed line there are no areas of local absolute instability of the jets. Thus,
this result is in agreement with the data from [11].

4. GLOBAL INSTABILITY OF A JET EVOLVING DOWNSTREAM
Above, a local analysis of instability of the jet f low, which does not take into account the spatial “blur-

ring” of the velocity profile, was carried out. Then, taking into account this “blurring,” the global insta-
bility of f low under consideration is studied based on the construction and analysis of a model equation
that reflects the main properties of the original f low. Namely, the global eigenmode arises as a conse-
quence of local absolute instability [12, 13], and that, in turn, is explained by the merging of two wave-
numbers  at the saddle point, one of the wavenumbers corresponding to a wave moving upstream, the
other to a wave moving downstream [22] (the direction of the wave is determined by sign of Imα as

). Then it is natural to assume that the two waves determine the presence of global instability.
We will consider the dispersion equation with the coefficients depending on x, which reproduces, when
its coefficients “are frozen” at various distances downstream, the vicinity of the saddle point of the func-
tion , which determines the nature of instability of the jet. Using this dispersion equation, we can
reconstruct the corresponding differential equation with variable coefficients. In what follows, based on
the exact solution of this equation, we will obtain a criterion that relates the frequency of the global eigen-
mode to the characteristics of local absolute instability.

4.1. Model Equation That Describes Local Absolute Instability
Following [23], we will consider the linearized Ginzburg-Landau equation for a certain unknown

function  (for example, it may be one of the components of the velocity disturbance), that describes
two spatial waves, and, therefore, has the second order in :

(4.1)

where , �, and  are, in the general case, complex-valued and dependent-on-x functions. To choose
these functions such that they can reproduce the behavior of spatial waves in the vicinity of the saddle
point of the jet, we first study the local properties of the model equation.

For this purpose, we will freeze the coefficients of the equation and consider the solutions in the form
of traveling waves . Substitution in (4.1) leads to the local dispersion equation

This equation can be written in the form:

(4.2)

where

(4.3)

It is obvious that the frequency  is the branch point of the complex function , that is, two
spatial waves corresponding to two wave numbers  merge at it. This point is the saddle point of the
inverse function , which, by definition, can be sought as a solution to the equation  [24].
The parameters  and  determine the location of the interaction point, and the parameter λ =

 determines the rotation (Argλ) and scaling (|λ|) of the neighborhood of the saddle
point.

To “emulate” the saddle point obtained from solving the problem of hydrodynamic stability for a jet,
we will take the parameters of Eq. (4.2) , , and  so that the pattern observed in the jet would be repro-
duced. Solving system (4.3), we find:
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As calculations of the evolution of the jet show (see Section 4.3), when the velocity profile blurs, the
location of the saddle point, as well as the location of the branches in this plane (that is, the parameter ),
varies only slightly. The frequency Reωs also remains close to a constant. However, the absolute instability
growth rate decreases with the distance from the inlet jet cross-section, and its decrease occurs close to a
linear law with increase in the distance from the initial jet cross-section: , . Taking
into account all of the above, we obtain that

(4.4)

where

(4.5)

Thus, the model equation that describes variation in the local properties of the f low downstream, close
to the jet, takes the form:

(4.6)

4.2. Eigenmodes of the Model Equation
We will consider the eigenmodes of the resulting equation, that is, the solutions that depend harmon-

ically on time and satisfy zero boundary conditions in the initial jet cross-section and when moving away
from it downstream:

We obtain the eigenvalue problem for the equation

The resulting equation can be reduced to the Airy equation by simple transformations. Namely, we will
make the change , where , and the change of the variable x by a new vari-
able z:

(4.7)

We obtain the Airy equation

with the boundary conditions

We restrict our attention to the case

(4.8)
then the tendency of the function to zero along the real axis x is equivalent (due to the properties of the
Airy equation) to such a tendency along the real axis z.

The solution to the Airy equation that satisfies the second boundary condition—the downstream
attenuation condition—is the Airy function . Satisfying the first boundary condition,
namely, the condition of the absence of disturbance in the initial section, we obtain
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where  are zeros of the Airy function (real negative numbers). From here, using (4.7), we obtain the
spectrum of global natural frequencies 

(4.9)

Thus, the condition of growth of the nth global eigenmode  is equivalent to the condition

(4.10)
i.e., the increment of local absolute instability of the initial velocity profile must be greater than the value
of the right-hand side of the resulting inequality, which, in turn, depends on the decrease rate of this incre-
ment downstream . This condition connects the local properties of absolute instability and the global
instability of f low evolving downstream. Since the zero  of the Airy function is the smallest in
absolute value, the condition of global instability can be rewritten in the form:

(4.11)
The global eigenmodes of model equation (4.6) take the form:

(4.12)

We will consider the spatial eigenmode distribution, which is the product of two functions of the spatial
coordinate. Obviously, the first multiplier  describes spatial oscillations with the wavenumber of the
local saddle point , which correspond to the asymptotics of the localized disturbance in the plane-par-
allel approximation. In other words, these oscillations correspond to local absolute instability of f low. The
second multiplier  describes the envelope that ensures the fulfillment of the
damping conditions at x = 0 and as , the characteristic wavelength of the envelope being associ-
ated with the parameter that characterizes the decrease rate of the absolute instability increment (4.5).
The slower the spatial evolution of the unperturbed flow, the smaller , that is, the smaller the difference
between the global natural frequency and the absolute instability frequency  in the initial jet cross-
section, the more extended the eigenfunction becomes in space. Thus, the resulting solution (4.12)
describes modes arising from local absolute instability occurring in a finite spatial interval.

4.3. An Example of the Globally Unstable Jet
Above, in Section 3, we carried out calculations of the evolution of plane submerged jets. We will now

show that the characteristics of absolute instability can be sufficient for the development of global insta-
bility of an evolving jet. In what follows, an initial velocity profile with the parameters  and 
is taken for analysis. In Fig. 6 we have reproduced its downstream evolution, as well as the location of the
inflection point on the profile. It can be noted that the increase in the velocity at the inflection point in
the initial stages of jet development occurs very rapidly. This is caused by the large curvature of the profile
at the edge of jet, but slows down downstream as the velocity profile “spreads out” and its curvature
decreases.

In Fig. 7 we have reproduced the mapping of curves  into the complex plane  for sev-
eral velocity profiles corresponding to several coordinates x of the developing jet. As can be seen, the loca-
tion of the saddle point depends only slightly on x: the relative change in Reαs is equal to 2% and the rel-
ative changes in  and . The orientation of the branches  approaching the saddle
point, determined by Argλ, changes more significantly, but Argλ relates to the quantity  in (2.8) and does
not determine the asymptotic behavior of localized perturbations in the plane-parallel case. The quantity
|λ|, which determines the asymptotics (2.8) due to connection  (4.2), varies only slightly -
within 3%. These considerations make it possible to accept coefficients (4.4) to be close to constants.
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Fig. 6. Velocity profiles at x = 0.0, 0.8, 1.8, 3.4, 5.0, and 7.2 for the initial profile corresponding to , , circles
show the location of the inflection point (a). Velocity at the inflection point of the velocity profile as a function of the
streamwise coordinate x (b).
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Fig. 7. Mapping of a curve  into the plane  for a jet profile corresponding to the distances x = 0 (a), 0.8 (b),
1.8 (c), 3.4 (d), 5.0 (e), and 7.2 (f) from the initial cross-section. The calculation based on the Rayleigh equation is shown
by black color, the approximation (4.2) with the parameters of Table 1 is shown by gray color, circle shows the saddle
point .
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In Table 1 we have given the found values of , , and . The corresponding parameters � and
u0 are presented in Table. 2.

In Fig. 8 we have plotted the graph of variation in . From the graph it is obvious that the
decrease in the growth rate of absolute instability is approximately linear. Taking this fact into account,
the parameter  can be estimated from Table 1 as follows:

Taking the zero of the Airy function with the smallest absolute value  and considering var-
ious � from Table 2, we obtain the following estimates for the right-hand side of (4.11): 0.042; 0.043;

α ( )s x ω ( )s x λ( )x

ωIm ( )s x
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ωμ − ≈1
Im= 0.00700.d
dx
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Table 1. Saddle-point parameters at varios distances from inlet

x λ

0.0

0.8

1.8

3.4

5.0

7.2

αs ωs

−0.820 1.535i +0.927 0.050i −2.993 1.932i

−0.827 1.503i +0.911 0.041i −3.212 1.693i

−0.827 1.479i +0.897 0.032i −3.343 1.488i

−0.824 1.450i +0.879 0.021i −3.452 1.237i

−0.819 1.428i +0.863 0.011i −3.510 1.038i

−0.808 1.405i +0.845 0.000i −3.546 0.815i

Table 2. Estimates of the parameters of Eq. (4.6) at various distances from inlet

x �

0.0

0.8

1.8

3.4

5.0

7.2

0u

− +0.152 0.236i − +0.854 0.475i

− +0.128 0.244i − +0.789 0.520i

− +0.111 0.250i − +0.741 0.555i

− +0.092 0.257i − +0.690 0.593i

− +0.077 0.262i − +0.650 0.622i

− +0.062 0.268i − +0.606 0.653i
0.044; 0.045; 0.045; and 0.046 at , 0.8, 1.8, 3.4, 5.0, and 7.2, respectively. Condition (4.8) is sat-
isfied in all cases. Since , global instability condition (4.11) is satisfied for all five velocity
profiles. Taking into account the approximate nature of estimate of the parameter �, we can expect the
presence of global instability, that is, in this case, local absolute instability in a limited spatial interval is
fairly strong to generate global instability.

= 0.0x
ωIm (0) = 0.050s
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Fig. 8. Increment of local absolute instability Imωs as a function of the longitudinal coordinate x.
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SUMMARY
An algorithm that determines the length of the region of local absolute instability of a submerged jet

with a given initial velocity profile has been developed. After parameterizing the initial velocity profile, its
evolution downstream is calculated, then the nature of instability of the velocity profiles at various dis-
tances from the beginning of the resulting jet is analyzed. The nature of instability is determined by the
behavior of the level lines  of the frequency  on the complex plane of the wavenumber α. In the
studied class of the initial velocity profiles, a domain of parameters for which the largest length of the
region of local absolute instability of the jet  is realized was found.

The presence of a fairly extended region of local absolute instability of the f low leads to its global insta-
bility [12, 13]. To determine the quantitative characteristics of local instability, which would lead to global
instability, based on consideration of the model equation, a relation between the characteristics of local
absolute instability (which occurs in a limited spatial interval) and the global natural frequencies and
modes is obtained. The initial velocity profile of a jet from the class of profiles under consideration, for
which the existence of the growing global eigenmode is expected, is demonstrated. Thus, the possibility
of existence of the global instability of a plane submerged jet evolving in space is shown.

The experimental implementation of a globally unstable submerged jet can be carried out using the
technology described in [25]. This problem is of both fundamental and applied interest: such a f low can
be used to accelerate transition to turbulence in various technical devices and intensify mixing, for exam-
ple, in nozzles of combustion chambers and in chemical reactors.
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