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EFFECT OF THE AMPLITUDE OF A STATIONARY PERTURBATION
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Abstract: This paper touches upon the effect of an amplitude of a deflector introduced into a lam-
inar jet flow on the linear change coefficient of the radial component of a stationary perturbation.
Methods for introducing and measuring the perturbations are described. It is shown that a decrease
in the deflector amplitude has no effect on the flow pattern, cannot prevent an algebraic growth
mechanism, and causes a proportional decrease in the radial component of the stationary velocity
perturbation. Turbulence is established after reaching some radial expansion value that is indepen-
dent of the initial perturbation amplitude.
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INTRODUCTION

There are two main ways for perturbation growth in near-wall flows: a modal mechanism and an algebraic
(non-modal) mechanism. The latter ensures a bypass transition to turbulence [1, 2] and leads to the emergence of
longitudinal vortex structures, causing the mixing of fluid layers and the turbulization of the main flow. It is shown
in [3, 4] that there are longitudinal vortices formed in the laminar section in jet flows and in near-wall flows. These
longitudinal vortices are also called streaky structures. Such structures were modeled in the form of stationary
perturbations arising behind roughness elements located at the nozzle exit in [5]. Their visualization and the study
of their effect on Kelvin–Helmholtz billows were carried out in [6].

However, despite the large number of works devoted to the study of coherent structures arising in submerged
jets, the transition to turbulence in a laminar jet flow by a non-modal mechanism remains understudied as the first
theoretical investigations of optimal perturbations in jet flows have been published relatively recently [7, 8]. The first
known experimental study of the non-modal mechanism of perturbation growth in a jet flow was described in [9].
The present work is its continuation.

Stationary perturbations in submerged jets [7, 8] and in boundary layers [10] increase kinetic energy most
significantly through a non-modal mechanism. Therefore, it is proposed to place thin wave-like structures (deflec-
tors) into the laminar jet flow considered in this work. As shown in [9], they initiate the algebraic (non-modal)
mechanism of perturbation growth. In contrast to the modal mechanism [11], the algebraic mechanism is charac-
terized by a linear (rather than exponential) increase in the longitudinal component of the downstream velocity
perturbation and the formation of longitudinal vortices, which changes the laminar-turbulent transition scenario [9].
A similar process occurs in boundary layers [12].
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Fig. 1. 3D model of a deflector with n = 3 and ε = 0.05 (a), the visualization results of the cross
section of the flow subjected to a stationary deformation by the deflector (b), and the distribution of the
transverse velocity perturbation component experimentally obtained by the PIV method at a distance
from the outlet section equal to the jet diameter (c).

The linear stability theory is used to describe the perturbation growth mechanisms under the assumption
that the perturbations under consideration are small. Experiments with deflectors with relative deviations of outlet
shapes from a circle (ε = 0.05; 0.10) are described in [9]. It is shown that the laws of growth of longitudinal and
transverse velocity perturbation components correspond to the laws obtained theoretically for optimal perturbations.
Now the question is what minimal perturbations should be introduced into the jet in order to initiate the algebraic
mechanism. To answer this question, the azimuthal number is set to n = 3 (the nature of the perturbation
growth is the same for different values of n > 1 [9]: paired counter-rotating longitudinal vortices are observed
on the transverse section), and the value of ε is varied. Another phenomenon studied here is the dependence
of the transverse perturbation amplitude at which the transition to turbulence on the magnitude of the initial
perturbation introduced by the deflector.

1. EXPERIMENTAL APPARATUS AND THE METHOD OF INTRODUCING
STATIONARY PERTURBATIONS

A laminar axisymmetric air jet is considered. The apparatus that generates this jet is a short diffuser with
deturbulizing metal grids. Jet diameter D = 0.12 m, axial velocity Uc = 1.5 m/s, and Reynolds number Re = 5400
(calculated using the average velocity and the diameter). The jet generator is described in detail in [13].

Stationary perturbations are introduced into the jet using thin wave-like deflectors with a height h = D/12
and a thickness of 0.005D. Its inlet section is a circle with a diameter d = D/2, its the outlet section is a sinusoidally
deformed circle of the same diameter with the azimuthal number of deviations from the circle n = 3, and the relative
amplitude of this deviation ε = 0; 0.01; . . . ; 0.09; 0.10.

The nature of the change in the radial velocity perturbation component ur introduced by these deflectors
is determined using two methods: laser sheet visualization and particle image velocimetry (PIV) measurements.
This paper presents the results obtained only by the former method. Figure 1 shows a 3D model of the deflector,
the visualized transverse section of the flow, the distribution of the transverse velocity perturbation component
utr =

√
u2

r + u2
θ, taken from [9], and streamlines.

2. VISUALIZATION OF THE FLOW CROSS SECTION

Experiments on the visualization of the flow cross section are similar to those described in [9]. The flow
moving from top to bottom is seeded with small particles of glycerol (a continuous laser is used to create a laser
sheet), and a portable web camera is located below the plane of the laser sheet at a distance equal to 3D. The laser
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Fig. 2. r/R0 versus z/D at different values of ε: (1) ε = 0, (2) ε = 0.02, (3) ε = 0.04, (4) ε = 0.06,
(5) ε = 0.08, (6) ε = 0.10, and (7) no deflector.
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Fig. 3. k versus ε.

and the web camera are attached to a coordinate device and synchronously moved in the vertical direction. The video
recording is carried out at distances z/D = 1.00; 1.25; . . . ; 4.25; 4.50 for ε 6 0.05. For ε > 0.06, the initial and
the final measurement are carried out in sections z/D = 0.50 and z/D = 2.75, respectively. The reason for this
is as follows: in the case of large distances, the jet becomes turbulent and its conditional radius is impossible to
determine. The video recording is carried out at a frequency of 30 fps. Next, approximately five-second intervals
corresponding to some values of ε and z/D are selected. The frames selected in these intervals are averaged by pixel
brightness. The averaged frame is used to determine the radius of the circle that circumscribes the cross section
(Fig. 1b) and consequently the average radius r of the petal (perturbation). The resulting sets of values of r are
nondimensionalized by R0 at z/D = 0.5. The dependences of the resulting values r/R0 downstream on the z/D

coordinate are shown in Fig. 2. It is clear that dependence r/R0(z/D) is linear in all experiments, including those
for ε = 0 and in the absence of a deflector. The experimental points are more accurately approximated by a linear
dependence at ε 6 0.05 than at large values of ε. The explanation for this phenomenon is twofold. Firstly, there
is a need for a minimum distance at which perturbations are formed and begin to propagate linearly (this distance
is shorter for small ε); secondly, there is a greater degree of nonlinearity of the introduced perturbation. The
least squares method is applied for each ε to determine the straight line slope coefficient k (a constant increment
coefficient that is proportional to the downstream averaged radial component of the velocity perturbation ur). It can
be seen that, as ε becomes larger, the value of k increases almost linearly (Fig. 3). Consequently, the perturbations
introduced by the deflectors for different values of ε are similar. Indeed, before the jet flow reaches turbulence at
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Fig. 4. Visualization of the flow cross section before the transition to turbulence when perturbations
are introduced by the deflector (n = 3): (a) ε = 0.05, (b) ε = 0.10.

r/R0 ≈ 1.35, the shapes of the jet boundaries at ε = 0.05, z/D = 4.5 and ε = 0.1, z/D = 2.75 are approximately
the same (Fig. 4). At such a rate of increase in the size of the petals, the transverse vortex motion becomes quite
intense, which causes the transition to turbulence downstream.

CONCLUSIONS

It can be concluded from the experiments on visualizing the flow cross section in the presence of stationary
perturbations introduced by deflectors with a fixed azimuthal number n = 3 and a variable amplitude ε that a
decrease in ε does not lead to a change in flow pattern, does not prevent the occurrence of an algebraic growth
mechanism, and causes a proportional decrease in the radial velocity perturbation component. Moreover, the
transition to turbulence in all cases where they could be detected (for ε > 0.5) occurs when almost the same level of
deformation of the cross section of the jet is reached (but at different distances downstream): the size of the petals
reaches a threshold value, followed by the transition to turbulence.
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