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A B S T R A C T

We study a rigid finite-span cylinder mounted on an elastic cantilever beam transversely to the
direction of subsonic airflow in a wind tunnel. The purpose is to identify and analyze various
types of vortex-induced resonant excitation for use in energy harvesters based on vortex-induced
vibrations. The results of the experimental study show that in contrast to similar works with a
similar model configuration that performs two-dimensional translational oscillations, we have
discovered a previously unexplored three-dimensional type of VIV in which the cylinder rotates
around the cantilever support. It has been experimentally proven that a lock-in regime exists
for this type of oscillation, and the von Kármán vortex streets, generated by upper and lower
parts of the cylinder, are shifted in phase by 𝜋. We conduct a detailed analysis of this new type
of VIV.

1. Introduction

Vortex-induced vibrations (VIV) are a phenomenon of self-exciting oscillations of elastic or elastically mounted rigid bluff bodies
exposed to a gas or fluid flow. They can be observed near chimneys, submarine pipelines and risers (Païdoussis et al., 2010). Body
oscillations arise due to the lift force acting from the vortex structures formed downstream of the body, known as a von Kármán
vortex street. For rigid cylinders with a wide range of Reynolds numbers 𝑅𝑒 = 𝑈∞𝐷𝑒𝑥𝑡∕𝜈, the vortex shedding frequency 𝑓𝑠 satisfies
the Strouhal–Reynolds number (𝑆 𝑡−𝑅𝑒) relationship with 𝑆 𝑡 = 𝑓𝑠𝐷𝑒𝑥𝑡∕𝑈∞ ≈ 𝑐 𝑜𝑛𝑠𝑡. Here, 𝑈∞ is the flow velocity, 𝐷𝑒𝑥𝑡 is the cylinder
cross-section size, and 𝜈 is kinematic viscosity. In the case of circular cylinders, 𝐷𝑒𝑥𝑡 is the diameter, and the Strouhal number is
close to 0.2 for the Reynolds number range from 300 to 2 × 105, which is often called the subcritical range (Chen, 1987). However, for
elastically mounted cylinders, when the vortex shedding frequency is close to the cylinder’s natural frequency 𝑓𝑛, the phenomenon
of synchronization or lock-in is observed (Griffin, 1985; Sarpkaya, 2004; Williamson and Govardhan, 2004). In this regime, vortex
shedding frequency no longer satisfies 𝑆 𝑡 ≈ 𝑐 𝑜𝑛𝑠𝑡 and remains almost equal to the cylinder’s natural frequency. Larger oscillation
amplitudes are observed within the lock-in regime. In addition to the Strouhal number, the dimensionless reduced velocity is also
used to characterize VIV, which is defined as 𝑉𝑟 = 𝑈∞∕𝑓𝑛𝐷𝑒𝑥𝑡. Larger oscillation amplitudes result in wider lock-in ranges. The
lock-in regime range of reduced velocities always includes a value corresponding to the inverse Strouhal number, near which the
maximum amplitude is attained (Bearman, 1984). As the flow speed increases, the post-lock-in regime begins, which is characterized
by the appearance of a jump in vortex shedding frequency, representing the end of the lock-in regime. In this regime, the vortex
shedding frequency again satisfies 𝑆 𝑡 ≈ 𝑐 𝑜𝑛𝑠𝑡.

Bearman (1984), in his review of experimental studies related to vortex shedding, examined the mechanism of vortex shedding
from the fixed bluff bodies. He stated that vortex shedding primarily occurs due to the interaction of two shear layers. Another
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important point discussed in his work is the absence of two-dimensionality in the vortices shed from a two-dimensional bluff body
in uniform flow, i.e., the unsteady quantities related to vortex shedding are not constant along the body span. From Farivar (1981)
work, it is also known that for a circular cylinder of finite span, the vortex shedding frequencies and the Strouhal number are lower
in sections close to the end of the cylinder than for an infinitely long cylinder. In these sections, 𝑆 𝑡 is reduced to approximately
0.09–0.17. Thus, vortex shedding has a complex structure, even for fixed cylinders.

Vortex shedding from oscillating bodies is also a complex phenomenon. The vortex formed on the cylinder affects its motion,
ut at the same time, the movement of the cylinder changes the structure of the von Kármán vortex street. Williamson and Roshko

(1988) found two regular vortex shedding modes and characterized each mode by the number of vortices: 2S, when two single
vortices are shed from the cylinder per cycle of oscillations, and 2P, when two pairs of vortices are shed per cycle. Another mode
f vortex shedding was discovered by Jauvtis and Williamson (2004) for the cylinder with two degrees of freedom, with shedding
f two vortex triplets per cycle, named the 2T mode.

In a relatively recent work, Azadeh-Ranjbar et al. (2018) studied the VIV of finite-length circular cylinders with free ends and
ith different aspect-ratios AR, defined as the cylinder’s length related to its diameter. They discovered that in the pre-lock-in and

n post-lock-in regimes, the 𝑆 𝑡 −𝑅𝑒 relationship with 𝑆 𝑡 ≈ 𝑐 𝑜𝑛𝑠𝑡 remains but with a 𝑆 𝑡 smaller than 0.2, and the lower the AR, the
ower the Strouhal number. The Strouhal number stays almost the same along the cylinder’s span, but as it approaches the cylinder
nds, it decreases. This effect occurs due to the presence of tip vortices because of the shear layer that separates from the cylinder
nds (Zdravkovich et al., 1989). Azadeh-Ranjbar et al. (2018) also found that the reduced velocity value at peak amplitude increases

approximately from 6.7 to 10.5 with a decrease in AR from 28.8 to 5.0. The response region of reduced velocities expands with
decreasing AR.

The phase angle between lift force and cylinder deviation versus flow speed was plotted by Griffin et al. (1973). They
showed that phase angle increases with increasing flow speed. Bearman and Currie (1979) subsequently confirmed this phase shift
ehavior. Sarpkaya (1978) studied time-dependent force acting on a rigid circular cylinder undergoing forced transverse oscillations

in a uniform flow. He determined the in-phase and out-of-phase components of the force from experiments with Reynolds numbers
n the range of (5–25)×103.

Over the past decades, the phenomenon of vortex-induced vibrations of circular cylinders has been actively used in the
evelopment of new types of wind generators (Bernitsas et al., 2008; Zhang and Wang, 2016; Adhikari et al., 2020; Wang et al.,

2021; Zhang et al., 2021). Reviews on recent energy-harvesting models can be found in works of Abdelkefi (2016) and Wang et al.
(2020). Depending on the oscillation amplitude, induction coils, magnets, and capacitive or piezoelectric transducers are used to
convert mechanical energy into electrical energy (Li et al., 2016). Elahi et al. (2018) review the mechanisms of energy extraction
and analyze existing piezoelectric electric power generators.

Since energy harvesting leads to effective additional damping in the oscillatory system, an important problem of finding ways to
ncrease the intensity of oscillations arises. This can be ensured by an increase in their amplitude and frequency. To predict vortex-

excited resonance characteristics, including oscillations amplitude, Griffin (1980) and Skop and Balasubramanian (1997) plotted the
dimensionless transverse amplitude peak 𝐴𝑚𝑎𝑥∕𝐷𝑒𝑥𝑡 versus Skop–Griffin number 𝑆 𝐺 = 2𝜋3𝑚∗𝜁𝑠𝑆 𝑡2 (Griffin et al., 1975), known as
a ‘‘Griffin plot’’. Here, 𝜁𝑠 = 𝑐∕(2𝑚𝑠(2𝜋 𝑓𝑛)) is the corresponding structural damping ratio, 𝑐 is the structural damping, 𝑚∗ = 𝑚𝑠∕𝑚𝑎 is
the mass ratio, 𝑚𝑠 is the structural mass, and 𝑚𝑎 is the displaced fluid mass.

The following works observed regimes with increased amplitude. Khalak and Williamson (1996, 1999) showed that 2P vortex
shedding mode for a low mass ratio corresponds to oscillation amplitudes of nearly one cylinder diameter 𝐷𝑒𝑥𝑡. The corresponding
ranch of the amplitude response curve was called ‘‘upper branch’’. Morse and Williamson (2009) showed that this mode related to

upper branch was distinct from 2P mode corresponding to the lower branch. They suggested to call the vortex shedding mode related
to the upper branch ‘‘2P𝑂 mode’’. Moreover, Zhou et al. (1999) numerically showed that adding a streamwise degree of freedom
to the cylinder increases the maximum amplitude compared to one-degree-of-freedom oscillations. Jauvtis and Williamson (2004)
showed that in the 2T mode that exists for cylinder-mass ratios less than 6, the oscillation amplitude is nearly 1.5𝐷𝑒𝑥𝑡; corresponding
ranch of the amplitude response curve was called ‘‘super-upper branch’’. Azadeh-Ranjbar et al. (2018) for finite-length rigid circular

cylinders obtained that with free ends, the lower the aspect-ratio AR in the response region, the higher the reduced velocity and
the peak amplitude. Ivanov and Vedeneev (2021) found that a 39% increase in oscillation amplitude was obtained for an elastic
ylinder near a finite-length rigid plate compared to an isolated cylinder.

In the present work, the model of a circular cylinder attached to a flexible rectangular beam is studied. A similar configuration was
considered by Dai et al. (2014), Azadeh-Ranjbar et al. (2018), Adhikari et al. (2020), and Zhang et al. (2021). In their experiments,
o excitation of oscillations was observed out of the translational VIV mode’s lock-in regime. However, in contrast to those works,

we discovered a previously unexplored type of VIV in the post-lock-in regime region of translational oscillations. It is caused by
resonance of the vortex street with rotational oscillations of the cylinder (Fig. 1), in which the beam performs torsional motion.
For the experimental model under consideration in this regime, it turned out that the cylinder oscillates with a larger frequency
and amplitude compared to the translational mode. If we proceed from the classical concept of vortex shedding, when the vortices
along the cylinder span are shed approximately in phase, then rotational VIV cannot arise since the torque acting on the cylinder
from the vortices is close to zero. Thus, it is suggested that during these three-dimensional rotational oscillations, the von Kármán
vortex streets generated by the upper and lower parts of the cylinder are shifted in phase by 𝜋, and the transition from the upper
to the lower cylinder segments occurs in the area of the attaching beam (acting as a splitter plate), which prevents vortex shedding
at the cylinder center (Zhao, 2023). The main goal of the present paper is to analyze this new type of VIV.

The structure of the paper is as follows. In Section 2, we describe the problem statement. The derivation of the oscillation
equations is given in Section 3. In Section 4, we describe the experimental setup and the model used in tests. In Section 5, we
present the experimental results. Finally, Section 6 summarizes the results and concludes the paper.
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Fig. 1. Two predominant types of oscillation: (a) translational and (b) rotational of a circular cylinder attached to a rectangular beam.

Fig. 2. Geometry of the experimental model.

2. Problem statement

Let us consider a rectangular elastic beam of length 𝑙, height 𝑎, and thickness 𝑏, which is rigidly embedded in a massive base,
as shown in Fig. 2. The other end of the beam is rigidly embedded into a thin-walled rigid circular cylinder with length 𝐿, external
diameter 𝐷𝑒𝑥𝑡, and internal diameter 𝐷𝑖𝑛. Let us introduce a coordinate system, as shown in Fig. 2. The circular cylinder can perform
plane-parallel translational motion in the 𝑂 𝑦𝑧 plane, causing bending deformation of the beam. It can also rotate around the 𝑂 𝑧 axis,
causing torsional deformation of the beam. Thus, there are two predominant types of motion: translational and rotational, as can
be seen in Fig. 1. This system is excited by the uniform air flow moving opposite to the direction of the 𝑧-axis. As translational-type
oscillations are a well-known phenomenon studied in detail by many authors, the main goal of the present study is the analysis of
rotational oscillations, which are, to our knowledge, previously unexplored.

3. Equations of motion

3.1. Rotational oscillations

According to Timoshenko (1937), the equation of free torsional oscillations of the beam, under the assumptions of a small
torsional rotation angle and the hypothesis of plane sections, is written in the form:

𝐼𝑚0
𝜕2𝜃
𝜕 𝑡2 −

𝜕 𝑀𝑧
𝜕 𝑧 = 0, 𝑀𝑧 = 𝐺 𝐼 𝜕 𝜃

𝜕 𝑧 (1)

where 𝑂 𝑧 is the elastic axis, 𝑧 is the cross-section coordinate of the beam, 𝑡 is time, 𝐺 is the shear modulus, 𝜃(𝑧, 𝑡) is the torsional
rotation angle (Fig. 3), 𝐼𝑚0 is the cross-section mass polar moment of inertia about the elastic axis, 𝑀𝑧 is the twisting moment, 𝐼 is
the torsion constant, and 𝐺 𝐼 is the torsional stiffness.

In the case of a homogeneous beam with a constant rectangular cross-section, we have

𝐼 𝜕2𝜃 − 𝐺 𝐼 𝜕
2𝜃 = 0, (2)
𝑚0 𝜕 𝑡2 𝜕 𝑧2

3 
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Fig. 3. Rotational oscillations of a circular cylinder attached to rectangular beam.

where 𝐼 = 𝑘𝑎𝑏3 for 𝑎 ≥ 𝑏, 𝐼𝑚0 =
1
12𝜌𝑎𝑏

(

𝑎2 + 𝑏2
)

. Fig. 3 defines 𝑎 and 𝑏, 𝜌 is the beam material density. The value of the parameter 𝑘
for a rectangular beam can be found in Ugural and Fenster (1975). Alternatively, the torsion constant 𝐼 for 𝑎 ≥ 𝑏 can be calculated
with an error of no more than 4% as follows (Young et al., 2012):

𝐼 ≈ 𝑎𝑏3

16

(

16
3

− 3.36 𝑏
𝑎

(

1 − 𝑏4

12𝑎4

))

(3)

The equation of motion is supplemented with boundary conditions. The condition of a rigidly embedded end is equivalent to a
rotation angle of zero at the attached point. The condition at the other end is described by the cylinder torque equation (Timoshenko,
1937). Thus, for a beam with one rigidly embedded end and a rigid body attached to the other end, we obtain:

𝜃(0, 𝑡) = 0,
[

𝐼𝑐 𝑦𝑙 𝜕
2𝜃
𝜕 𝑡2 +𝑀𝑧

]

|

|

|

|

|𝑧=𝑙
= 0. (4)

Here, 𝐼𝑐 𝑦𝑙 = 𝑚 ⋅ 𝑅2
𝑒𝑥𝑡∕2 + 𝑚 ⋅ 𝐿2∕12 is the cylinder mass moment of inertia about the axis 𝑂 𝑧, 𝑚 is its mass, and 𝑅𝑒𝑥𝑡 = 𝐷𝑒𝑥𝑡∕2 and

𝑅𝑖𝑛𝑡 = 𝐷𝑖𝑛𝑡∕2 are the cylinder’s external and internal radii, respectively.

3.2. Translational oscillations

We assume that all deviations from the equilibrium position are small. The position of the cylinder is determined by the angle
𝛼(𝑡) of its deviation from the direction 𝑧 and the coordinates 𝑦0(𝑡), 𝑧0(𝑡) of the instantaneous position of the beam’s end. Therefore,
we have

𝑧0(𝑡) = 𝑙 , 𝑦0(𝑡) = 𝑤(𝑙 , 𝑡), (5)

where 𝑤(𝑧, 𝑡) is the neutral line of the beam’s transverse deviation from the 𝑂 𝑧 axis (see Fig. 4). At point 𝑧 = 𝑙, where the beam is
rigidly embedded into the cylinder, the deflection angle 𝛼(𝑡) must at any moment coincide with the beam’s tangent at the point of
their attachment, which is expressed by the relation

𝜕 𝑤
𝜕 𝑧

|

|

|

|𝑧=𝑙
= 𝛼(𝑡). (6)

According to Timoshenko (1937), the equation for the beam’s free-bending oscillations is written in the form

𝐸 𝐽 𝜕4𝑤
𝜕 𝑧4 + 𝜌𝑆 𝜕2𝑤

𝜕 𝑡2 = 0, (7)

where 𝐸 is Young’s modulus, 𝐽 is the second moment of area of the beam’s cross-section relative to the axis passing through the
neutral line perpendicular to the 𝑂 𝑦𝑧 plane, and 𝑆 = 𝑎𝑏 is the cross-sectional area of the beam.

The equation of motion is supplemented with boundary conditions. The condition of a rigidly embedded end is equivalent to
the absence of deviation and deviation angle of zero at the attached point. The condition at the other end is formulated by the
cylinder motion equation and torque equation. The Eq. (8) for the 𝑦-component of the velocity of the cylinder’s center of mass 𝑣𝑐 𝑦𝑙
is obtained from Euler’s formula
𝑣𝑐 𝑦𝑙(𝑡) = �̇�|𝑧=𝑙 + �̇�(𝑡)𝑅𝑒𝑥𝑡. (8)

4 
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Fig. 4. Translational oscillations of a circular cylinder attached to a beam.

The bending moment 𝑀 and shear force 𝑄 acting on the cylinder are determined as follows (Gere and Timoshenko, 1997):

𝑀 = 𝐸 𝐽 𝜕2𝑤
𝜕 𝑧2 , 𝑄 = −𝐸 𝐽 𝜕3𝑤

𝜕 𝑧3 . (9)

Thus, according to (8) and (9), we obtain the following boundary conditions:

𝑧 = 0 ∶ 𝑤(0, 𝑡) = 0, 𝜕 𝑤
𝜕 𝑧 = 0,

𝑧 = 𝑙 ∶ 𝑚 ̇𝑣𝑐 𝑦𝑙 = −𝑄, 𝐽0�̈�(𝑡) = −𝑀 − 𝑅𝑒𝑥𝑡𝑄,

𝐽0 =
𝑚
2
(

𝑅2
𝑒𝑥𝑡 + 𝑅2

𝑖𝑛𝑡
)

, 𝐽 = 𝑎𝑏3

12
,

(10)

where 𝐽0 is the circular cylinder moment of inertia about the cylinder axis.

3.3. Natural frequencies

Let us solve the homogeneous Eqs. (2) and (7) using the separation of variables method. We are looking for a solution in the
form

𝜃(𝑧, 𝑡) = 𝑇𝑟𝑜𝑡(𝑡)𝑍𝑟𝑜𝑡(𝑧), 𝑤(𝑧, 𝑡) = 𝑇𝑡𝑟(𝑡)𝑍𝑡𝑟(𝑧). (11)

As a result, we have the following equations:
�̈�𝑟𝑜𝑡(𝑡) + 𝜔2

𝑟𝑜𝑡𝑇𝑟𝑜𝑡(𝑡) = 0, �̈�𝑡𝑟(𝑡) + 𝜔2
𝑡𝑟𝑇𝑡𝑟(𝑡) = 0,

𝑍′′
𝑟𝑜𝑡(𝑧) + 𝑛2𝑍𝑟𝑜𝑡(𝑧) = 0, 𝑍𝐼 𝑉

𝑡𝑟 (𝑧) − 𝑘4𝑍𝑡𝑟(𝑧) = 0,

𝑛 = 𝜔𝑟𝑜𝑡

√

𝐼𝑚0
𝐺 𝐼 , 𝑘 =

√

𝜔𝑡𝑟
4

√

𝜌𝑆
𝐸 𝐽 .

(12)

Solving the second equations, we get
𝑍𝑟𝑜𝑡(𝑧) = 𝐴 cos(𝑛𝑧) + 𝐵 sin(𝑛𝑧),

𝑍𝑏𝑒𝑛𝑑 (𝑧) = 𝐶 ch(𝑘𝑧) +𝐷 sh(𝑘𝑧) + 𝐸 cos(𝑘𝑧) + 𝐹 sin(𝑘𝑧).
(13)

Substituting Eq. (13)’s first expression into the boundary conditions (4) leads to an eigenvalue problem for the unknown
parameter 𝑛:

cos(𝑛𝑙) − 𝑛
𝐼𝑐 𝑦𝑙
𝐼𝑚0

sin(𝑛𝑙) = 0, 𝐴 = 0, 𝐵 ≠ 0. (14)

The solution to this equation is a discrete set of eigenvalues:

𝑛 = 𝑛1, 𝑛2, 𝑛3 … (15)
5 
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Substituting Eq. (13)’s second expression into the boundary conditions (10) leads to a linear homogeneous system of equations
or the coefficients 𝐶 , 𝐷 , 𝐸 , and 𝐹 . For the system to have a nontrivial solution, its determinant must be equal to zero:

|

|

|

|

|

|

|

|

|

1 0 1 0
0 1 0 1
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

|

|

|

|

|

|

|

|

|

= 0. (16)

Here, the matrix elements can be defined as:

𝑎31 = ch(𝑘𝑙) +
[

𝑘𝑅𝑒𝑥𝑡 +
𝜌𝑆
𝑚𝑘

]

sh(𝑘𝑙),

𝑎32 = sh(𝑘𝑙) +
[

𝑘𝑅𝑒𝑥𝑡 +
𝜌𝑆
𝑚𝑘

]

ch(𝑘𝑙),

𝑎33 = cos(𝑘𝑙) −
[

𝑘𝑅𝑒𝑥𝑡 −
𝜌𝑆
𝑚𝑘

]

sin(𝑘𝑙),

𝑎34 = sin(𝑘𝑙) +
[

𝑘𝑅𝑒𝑥𝑡 −
𝜌𝑆
𝑚𝑘

]

cos(𝑘𝑙),

𝑎41 = ch(𝑘𝑙) −
[

𝑘𝑅𝑒𝑥𝑡 +
𝐽0
𝜌𝑆

𝑘3
]

sh(𝑘𝑙),

𝑎42 = sh(𝑘𝑙) −
[

𝑘𝑅𝑒𝑥𝑡 +
𝐽0
𝜌𝑆

𝑘3
]

ch(𝑘𝑙),

𝑎43 = − cos(𝑘𝑙) −
[

𝑘𝑅𝑒𝑥𝑡 −
𝐽0
𝜌𝑆

𝑘3
]

sin(𝑘𝑙),

𝑎44 = − sin(𝑘𝑙) +
[

𝑘𝑅𝑒𝑥𝑡 +
𝐽0
𝜌𝑆

𝑘3
]

cos(𝑘𝑙).

Thus, we obtain Eq. (16) for the unknown parameter 𝑘. The solution to this equation is a discrete set of eigenvalues:

𝑘 = 𝑘1, 𝑘2, 𝑘3 … (17)

The natural frequencies of the system are determined using (12)’s last expressions. For the first translational and rotational
circular 𝜔 and physical 𝜎 natural frequencies, which are our interest, we obtain:

𝜔𝑡𝑟 = 𝑘21

√

𝐸 𝐽
𝜌𝑆

, 𝜎𝑡𝑟 =
𝑘21
2𝜋

√

𝐸 𝐽
𝜌𝑆

𝜔𝑟𝑜𝑡 = 𝑛1

√

𝐺 𝐼
𝐼𝑚0

, 𝜎𝑟𝑜𝑡 =
𝑛1
2𝜋

√

𝐺 𝐼
𝐼𝑚0

(18)

4. Experimental setup

Experiments were conducted in the Institute of Mechanics of Lomonosov Moscow State University in wind tunnel A-10 with an
iffel chamber and an open test section. The test section of the octagonal cross-section (Fig. 5) was 800 mm in height and 1360 mm
n length. A beam with a 3 × 33 mm cross-section was made of steel with density 𝜌 = 7850 kg/m3, Young’s modulus 𝐸 = 224 × 109
a, and shear modulus 𝐺 = 82 × 109 Pa. Two beams of lengths 𝑙 = 325 mm and 𝑙 = 375 mm were tested. The cylinder was made of
uralumin with mass 𝑚𝑠 = 0.116 kg (the corresponding mass ratio 𝑚∗ ≈ 386), length 𝐿 = 500 mm, external diameter 𝐷𝑒𝑥𝑡 = 25 mm,
nd internal diameter 𝐷𝑖𝑛𝑡 = 23 mm. The operating Reynolds numbers range was (1 − 9.3) × 103.

A Riftek RF-603 triangulation laser sensor was used to measure the deviations of the cylinder’s top end 5 mm from the tip
(Fig. 5(b) and 6(a)). The sensor was fixed in space, and its measurements were recorded at a sampling rate of 8 kHz. Note that
in rotational VIV mode, the tip of the cylinder moves along an arc, so the measurement point changed slightly during the period
of rotational oscillations. However, due to the small rotation angle values, the error in amplitude measurements was less than 1%.
A Smart Sensor AR866 hot-film anemometer was installed in the undisturbed flow to measure the flow speed. The measurement
error for both sensors was less than 1%. A mirror was installed on the elastic beam to identify the oscillation type based on the
reflection of a trace caused by a laser pointer (Fig. 6(a)): horizontal and vertical traces are caused by bending and torsional beam
deformations, respectively. The flow velocity fluctuations behind the cylinder were measured by a DISA 55DO5 constant temperature
anemometer (CTA) with a hot-wire probe 55P81 (Fig. 6(b)) at a sampling rate of 8 kHz and a recording duration of 20 sec. The
robe was located at a distance of two diameters in the streamwise direction and one diameter in the transverse direction from the
ylinder axis (Fig. 6(a)). We measured the flow velocity fluctuations by using one probe sequentially in different cross-sections at

distances of ±25, ±50, ±100, and ±150 mm from the 𝑂 𝑧 axis. The natural frequencies and damping ratios of both types of oscillations
were measured by free oscillation tests in still air. The translational and rotational natural frequencies 𝑓𝑡𝑟 and 𝑓𝑟𝑜𝑡 measured were
12.67 Hz and 27.62 Hz for a beam of length 325 mm, and 10.10 Hz and 25.60 Hz for a beam of length 375 mm, respectively.
Damping ratios 𝜁𝑡𝑟 and 𝜁𝑟𝑜𝑡, corresponding to translational and rotational oscillations, were also measured for both beam lengths.
The theoretical natural frequencies were calculated using Eqs. (18). The values of these quantities are given in Table 1. It is seen
hat the theoretical frequencies are in reasonable agreement with the measured values.
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Fig. 5. Experimental equipment. (a) The circular cylinder on the transverse rectangular beam in the wind tunnel, (b) the geometric properties of the experimental
facility.

Table 1
Natural oscillations parameters.
𝑙, mm 𝑓𝑡𝑟 , Hz 𝜎𝑡𝑟 , Hz 𝜁𝑡𝑟 𝑓𝑟𝑜𝑡 , Hz 𝜎𝑟𝑜𝑡 , Hz 𝜁𝑟𝑜𝑡
325 12.67 14.46 0.011 27.62 27.93 0.012
375 10.10 11.37 0.011 25.60 25.99 0.011

5. Results

5.1. Vortex shedding analysis for a fixed cylinder

In the first series of experiments, the vortex shedding frequency 𝑓𝑠 was measured for a fixed cylinder with a beam length 𝑙
of 325 mm sequentially at heights of ±25, ±50, ±100, and ±150 mm from the 𝑂 𝑧 axis. As can been seen from Fig. 7, the vortex
shedding frequency nearly satisfies 𝑆 𝑡 ≈ 0.16, which correlates well with the experimental results of Azadeh-Ranjbar et al. (2018).
The decrease in the Strouhal number compared to infinite-span cylinders is associated with the presence of tip vortices because of
the shear layer that separates from the cylinder ends (Zdravkovich et al., 1989).

5.2. Amplitude response for both oscillation types

The cylinder was unfixed in subsequent experiments. As a result of the second series of experiments, the oscillation amplitudes
𝐴 versus the flow speed 𝑈∞ and the dimensionless amplitude 𝐴∕𝐷𝑒𝑥𝑡 versus reduced velocity 𝑉𝑟 were plotted for the two beam
lengths. Initially, with an increase in flow speed, the excitation of translational oscillations occurred; with a subsequent increase in
speed, the oscillations became rotational (Fig. 8(a)). The shift in the amplitude response towards higher flow speeds is explained by
the difference in natural frequencies. But in terms of dimensionless parameters, the amplitude peaks correspond to close reduced
velocities. Note that since there are two different types of oscillations, we have calculated the reduced velocity using two different
natural frequencies 𝑓𝑡𝑟, and 𝑓𝑟𝑜𝑡, corresponding to translational and rotational VIV ( Table 1). The amplitude response shows
maximum oscillation amplitude for both oscillation types in a reduced velocity range of 6.1–7.2 (Fig. 8(b)), which corresponds to a
Strouhal number of 0.164–0.139. These values correlate well with Azadeh-Ranjbar et al. (2018) results for translational VIV using
a similar model. It can be seen that the amplitude of rotational VIV turned out to be more than twice as large as translational VIV.
The peak amplitudes of classical quasi-two-dimensional translational oscillations versus SG are plotted in Fig. 8(c); they correlate
quite well with the Griffin plot (Griffin, 1980; Skop and Balasubramanian, 1997). It should be noted that the amplitude of rotational
VIV is a function of the cylinder cross-section coordinate 𝑥. To avoid 𝑥-dependence, the deviation angle of the cylinder 𝜃 can be
taken as a characteristic of the amplitude of rotational VIV. The maximum amplitude of rotational VIV corresponds to an angle of
0.029 rad for a beam length of 325 mm, and 0.034 rad for a beam length of 375 mm. This parameter, however, was not used in
Figs. 8 and 9, because it does not make sense for translational VIV.

5.3. Lock-in regime

The third set of experiments aimed to analyze the flow downstream of the cylinder for both types of VIV using the synchronous
recordings of the triangulation laser sensor and constant temperature anemometer. The beam length 𝑙 was 325 mm, and the probe
was located sequentially at heights of ±25, ±50, ±100, and ±150 mm from the 𝑂 𝑧 axis. This experiment demonstrates the existence
7 
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Fig. 6. Experimental scheme: (a) top view, (b) side view. (1) Circular cylinder, (2) rigidly embedded beam, (3) rigid massive base, (4) hot-film anemometer, (5)
mirror, (6) CTA probe, (7) laser pointer, (8) triangulation laser sensor, (9) screen, (10) analog-to-digital converter (ADC), (11) PC. A laser pointer trace reflected
in a mirror determines the oscillation type.

of 5 regimes (Fig. 9(c)). Pre- and post-lock-in regimes correspond to modes for which the vortex shedding frequency nearly satisfies
𝑆 𝑡 ≈ 0.16. The translational lock-in regime corresponds to classical VIV observed by Azadeh-Ranjbar et al. (2018). As can be seen
from Figs. 9(c) and 9(d), there is also a lock-in regime for rotational VIV, which we call ‘‘rotational lock-in’’. In this regime, the
oscillation amplitude of the cylinder tips is greater than translational lock-in. The existence of two VIV modes can be useful in the
design of VIV-based energy harvesters. Finally, the transition regime corresponds to the mode between translational and rotational
lock-in regimes, where vortex shedding frequency satisfies 𝑆 𝑡 ≈ 𝑐 𝑜𝑛𝑠𝑡. In terms of dimensionless parameters, the data from lock-in
regions (Fig. 9(c)) can be represented as follows: the ratio 𝑓𝑠∕𝑓𝑡𝑟 versus reduced velocity 𝑉𝑟 as shown in Fig. 9(d), where 𝑉𝑟 was
calculated differently for translational and rotational VIV with corresponding structural frequencies taken as a frequency scale. It can
be seen that the vortex shedding frequency for rotational lock-in is more than twice as large as for translational lock-in, whereas lock-
in 𝑉𝑟 ranges are close. Spectral analysis of the CTA signal showed that in the lock-in regions the predominant frequency practically
coincided with the natural frequency and there is no double frequency. Thus, the vortex shedding corresponded to the 2S mode.
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Fig. 7. Vortex shedding frequency 𝑓𝑠 (Hz) for the fixed cylinder versus flow speed 𝑈∞ (m/s) for a beam length of 325 mm and anemometer height locations of
±25, ±50, ±100, and ±150 mm from the axis of rotation.

Fig. 8. (a) Oscillation amplitude 𝐴 (mm) versus flow speed 𝑈∞ (m/s) for two beam lengths, (b) dimensionless amplitude 𝐴∕𝐷𝑒𝑥𝑡 versus reduced velocity 𝑉𝑟;
c) Griffin plot with points corresponding to peak amplitudes of translational oscillations. Circular and square markers correspond to translational and rotational

oscillations, respectively.

5.4. Phase shift analysis

The third series of experiments was also devoted to analyzing the phase shift between the cylinder position and the vortex shed.
The anemometer signal was bandpass-filtered in a range of 𝑓𝑡𝑟 ± 0.1 Hz and 𝑓𝑟𝑜𝑡 ± 0.1 Hz, where 𝑓𝑡𝑟 and 𝑓𝑟𝑜𝑡 are natural frequencies
taken from Table 1. To calculate the phase shift 𝜑 between the flow velocity fluctuations and deviation of the cylinder, the correlation
between these signals was used, which is defined by Eq. (19):
9 



Y. Demchenko et al. Journal of Fluids and Structures 133 (2025) 104266 
Fig. 9. Amplitude response and vortex shedding frequency evolution for a beam length of 325 mm. (a) Oscillation amplitude 𝐴 (mm) and (c) vortex shedding
frequency 𝑓𝑠 (Hz) versus flow speed 𝑈∞ (m/s), (b) dimensionless amplitude 𝐴∕𝐷𝑒𝑥𝑡 and (d) 𝑓𝑠∕𝑓𝑡𝑟 ratio versus reduced velocity 𝑉𝑟 in lock-in regions. The markers
for the amplitude response graphs are similar to Fig. 8.

Fig. 10. Phase shift 𝜑 between the signals of anemometer and triangulation laser sensor versus reduced velocity 𝑉𝑟 for a beam length of 325 mm and anemometer
height locations of ±25, ±50, ±100, and ±150 mm from axis of rotation. (a) Translational lock-in, (b) rotational lock-in. Circular and square markers correspond
to translational and rotational oscillations, respectively; filled markers and empty markers correspond to top and bottom cross-sections, respectively.

cor r =
∑𝑁

𝑖=1 𝑤𝑖𝑠𝑖
√

∑𝑁
𝑖=1 𝑤

2
𝑖
∑𝑁

𝑖=1 𝑠
2
𝑖

, (19)

where 𝑤𝑖 is a time series of the cylinder deviations from the equilibrium position, 𝑠𝑖 is a filtered time series of the flow velocity

fluctuations, and 𝑁 is the number of measurements. For two periodic functions 𝑞(𝑡) = 𝑞0 cos(𝜔𝑡), 𝑢(𝑡) = 𝑢0 cos(𝜔𝑡+𝜑), the continuous

representation of correlation function is
∫ 𝑇
0 𝑞 𝑢𝑑 𝑡
cor r =
√

∫ 𝑇
0 𝑞2𝑑 𝑡 ∫ 𝑇

0 𝑢2𝑑 𝑡
→ cos𝜑, as 𝑇 → ∞, (20)
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Fig. 11. Phase shift differences 𝛥𝜑 = 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 − 𝜑𝑡𝑜𝑝 for the opposite sections located at the same distance from the rotation axis versus reduced velocity 𝑉𝑟.

where 𝜔 is a circular frequency and 𝑇 is the averaging time. The ar ccos function is used to calculate the phase shift 𝜑 between two
unctions. Since the sign of 𝜑 is not recovered by this method, we assume that 𝑤𝑖 = 𝑤0

𝑖 cos(𝜔𝑡), 𝑠𝑖 = 𝑠0𝑖 cos(𝜔𝑡+𝜑), and the sign was
etermined by direct comparison of these two signals. The resulting phase shift is shown in Fig. 10. These data sets were then fitted
ith a fourth-degree polynomial using the least squares method. Finally, phase shift differences 𝛥𝜑 = 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 −𝜑𝑡𝑜𝑝 between the von
ármán vortex streets in cross-sections located symmetrically relative to the 𝑂 𝑧 axis were calculated (Fig. 11).

As can be seen in Fig. 10, the phase shift increases along with reduced velocity for both types of oscillations. The phase shifts are
lmost the same for symmetrical cross-sections across the response region for translational VIV, i.e., the von Kármán vortex street is
lose to two-dimensional (Figs. 10 and 11). However, for rotational VIV, the phase at the top and bottom parts of the cylinder differ
y approximately 𝜋, i.e., they are opposite to each other. Moreover, the phase abruptly changes when passing through cross-sections
f the beam (which acts like a splitter plate). Thus, the beam prevents the vortex shedding and splits the flow into two ‘‘subflows’’,
n which the vortex shedding occurs in the antiphase.

6. Discussion and conclusions

We have studied the dynamics of a rigid, thin-walled, finite-span cylinder mounted on an elastic cantilever beam in a wind
tunnel. Two modes of VIV were observed: classical quasi-two-dimensional VIV and a previously unknown rotational type. In the
first mode, the beam experiences bending oscillations, and the cylinder performs two-dimensional translational motion. The second
mode is caused by the resonance of the vortex street with the rotational oscillations of the cylinder, in which the beam performs
torsional motion. To our knowledge, rotational VIV in such an experimental scheme has not been observed in the literature before,
o this discovery is this study’s primary finding. During these three-dimensional VIV, a lock-in regime exists and the von Kármán
ortex streets generated by the upper and lower parts of the cylinder, are shifted in phase by approximately 𝜋. The phase change

occurs abruptly near the beam, which acts as a splitter plate and prevents vortex shedding from the central sections.
The maximum amplitude of rotational VIV at the cylinder ends 𝐴∕𝐷𝑒𝑥𝑡 = 0.34 was obtained in the present experiments. In this

egime, the characteristic reduced velocity range is 6–7.2, which corresponds to a Strouhal number of 0.166–0.139. These values
re smaller than 𝑆 𝑡 ≈ 0.2 for two-dimensional vortex shedding, which is explained by the finite span of the cylinder in the present
xperiments. The amplitude of rotational VIV turned out to be more than twice as large as that of classical quasi-two-dimensional
ranslational VIV, which suggests more effective energy harvesting from the rotational oscillations.

The excitation of the rotational mode clearly yields the variable oscillation amplitude along the cylinder span. It is somewhat
similar to the oscillations of tapered cylinders studied by Techet et al. (1998) and Hover et al. (1998). In both cases, the non-
dimensional oscillation amplitude 𝐴∕𝐷 varies over the span. In Techet et al. (1998) study, this yields the existence of a ‘‘hybrid’’
vortex shedding mode, 2S, over one part of the cylinder and 2P over the other part. In the present study, such a hybrid mode was
ot observed, and the mode was always 2S. However, a sort of hybrid vortex shedding mode might exist for longer cylinder lengths

with a larger range of non-dimensional amplitudes, which could be a matter for future study.
The non-symmetric tapering of the cylinder in our configuration could also facilitate the excitation of the rotational mode. When

the translational oscillation mode is excited, the vortex shedding occurs in a quasi-two-dimensional form, which does not generate
orque on the cylinder. It is thus necessary to reconfigure the vortex street to be in anti-phase at two sides of the cylinder to support
otational oscillations. Non-symmetric tapering of the cylinder would additionally provoke the rotational mode and reconfiguration
f the vortex street since the torque would be non-zero even in a pure translational mode.

In future studies of rotational VIV, it would be interesting to analyze whether they occur without a splitter plate, which seems
o be a crucial point for the abrupt change of the vortex shedding phase, which, in turn, supports excitation of the rotational mode.
lso, it may seem that increase in the length of the beam, which decreases the pivotal stiffness, would lead to an increase in the

amplitude of the cylinder tip. However, the work done by fluid force over the oscillation cycle at the end sections will be negative
f the amplitude is too large (Morse and Williamson, 2009). This will lead to a decrease in the amplitude of oscillations in terms of
11 
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rotation angle, if the pivotal stiffness is sufficiently small. Hence, there should exist a limit in the amplitude growth as the pivotal
stiffness decreases. Optimal pivotal stiffness can be a matter of a future study. Another problem worth of study is the influence
of the cylinder’s length on the tip amplitudes and the angle of cylinder rotation, with the goal of maximizing the amplitudes by
selecting the appropriate length.
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